417 research outputs found
Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool
Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants
Strong Ultraviolet Pulse From a Newborn Type Ia Supernova
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs.
Although they are used empirically to measure cosmological distances, the
nature of their progenitors remains mysterious, One of the leading progenitor
models, called the single degenerate channel, hypothesizes that a white dwarf
accretes matter from a companion star and the resulting increase in its central
pressure and temperature ignites thermonuclear explosion. Here we report
observations of strong but declining ultraviolet emission from a Type Ia
supernova within four days of its explosion. This emission is consistent with
theoretical expectations of collision between material ejected by the supernova
and a companion star, and therefore provides evidence that some Type Ia
supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
Contribution of CTCF binding to transcriptional activity at the HOXA locus in NPM1-mutant AML cells
Transcriptional regulation of the HOXA genes is thought to involve CTCF-mediated chromatin loops and the opposing actions of the COMPASS and Polycomb epigenetic complexes. We investigated the role of these mechanisms at the HOXA cluster in AML cells with the common NPM1c mutation, which express both HOXA and HOXB genes. CTCF binding at the HOXA locus is conserved across primary AML samples, regardless of HOXA gene expression, and defines a continuous chromatin domain marked by COMPASS-associated histone H3 trimethylation in NPM1-mutant primary AML samples. Profiling of the three-dimensional chromatin architecture in primary AML samples with the NPM1c mutation identified chromatin loops between the HOXA cluster and loci in the SNX10 and SKAP2 genes, and an intergenic region located 1.4βMbp upstream of the HOXA locus. Deletion of CTCF binding sites in the NPM1-mutant OCI-AML3 AML cell line reduced multiple long-range interactions, but resulted in CTCF-independent loops with sequences in SKAP2 that were marked by enhancer-associated histone modifications in primary AML samples. HOXA gene expression was maintained in CTCF binding site mutants, indicating that transcriptional activity at the HOXA locus in NPM1-mutant AML cells may be sustained through persistent interactions with SKAP2 enhancers, or by intrinsic factors within the HOXA gene cluster
Type Ia Supernovae and the Hubble Constant
The focus of this review is the work that has been done during the 1990s on
using Type Ia supernovae (SNe Ia) to measure the Hubble constant (). SNe
Ia are well suited for measuring . A straightforward maximum-light color
criterion can weed out the minority of observed events that are either
intrinsically subluminous or substantially extinguished by dust, leaving a
majority subsample that has observational absolute-magnitude dispersions of
less than mag.
Correlations between absolute magnitude and one or more distance-independent SN
Ia or parent-galaxy observables can be used to further standardize the absolute
magnitudes to better than 0.2 mag. The absolute magnitudes can be calibrated in
two independent ways --- empirically, using Cepheid-based distances to parent
galaxies of SNe Ia, and physically, by light curve and spectrum fitting. At
present the empirical and physical calibrations are in agreement at or -19.5. Various ways that have been used to match
Cepheid-calibrated SNe Ia or physical models to SNe Ia that have been observed
out in the Hubble flow have given values of distributed throughout the
range 54 to 67 km/s Mpc. Astronomers who want a consensus value of
from SNe Ia with conservative errors could, for now, use km/s
Mpc^{-1}$.Comment: 46 pages. Hard copies of figures, all from the published literature,
can be obtained from the author. With permission, from the Annual Review of
Astronomy and Astrophysics, Volume 36, copyright 1998, by Annual Review
Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury
[EN] Objectives Acquired brain injury (ABI) can lead to the emergence of several disabilities and is commonly associated with high rates of anxiety and depression symptoms. Self-related constructs, such as self-esteem and self-compassion, might play a key role in this distressing symptomatology. Low explicit (i.e., deliberate) self-esteem is associated with anxiety and depression after ABI. However, implicit (i.e., automatic) self-esteem, explicit-implicit self-discrepancies, and self-compassion could also significantly contribute to this symptomatology. The purpose of the present study was to examine whether implicit self-esteem, explicit-implicit self-discrepancy (size and direction), and self-compassion are related to anxious and depressive symptoms after ABI in adults, beyond the contribution of explicit self-esteem. Methods The sample consisted 38 individuals with ABI who were enrolled in a long-term rehabilitation program. All participants completed the measures of explicit self-esteem, implicit self-esteem, self-compassion, anxiety, and depression. Pearson's correlations and hierarchical regression models were calculated. Results Findings showed that both self-compassion and implicit self-esteem negatively accounted for unique variance in anxiety and depression when controlling for explicit self-esteem. Neither the size nor direction of explicit-implicit self-discrepancy was significantly associated with anxious or depressive symptomatology. Conclusions The findings suggest that the consideration of self-compassion and implicit self-esteem, in addition to explicit self-esteem, contributes to understanding anxiety and depression following ABI.Lorena Desdentado is supported by a FPU doctoral scholarship (FPU18/01690) from the Spanish Ministry of Universities. This work was supported by CIBEROBN, an initiative of the ISCIII (ISC III CB06 03/0052).Desdentado, L.; Cebolla, A.; Miragall, M.; Llorens RodrΓguez, R.; Navarro, MD.; BaΓ±os, RM. (2021). Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury. Mindfulness. 12(4):899-910. https://doi.org/10.1007/s12671-020-01553-wS899910124Anson, K., & Ponsford, J. (2006). Coping and emotional adjustment following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 21(3), 248β259. https://doi.org/10.1097/00001199-200605000-00005.BaΓ±os, R. M., & GuillΓ©n, V. (2000). Psychometric characteristics in normal and social phobic samples for a Spanish version of the Rosenberg Self-Esteem Scale. Psychological Reports, 87(1), 269β274. https://doi.org/10.2466/pr0.2000.87.1.269.Beadle, E. J., Ownsworth, T., Fleming, J., & Shum, D. (2016). The impact of traumatic brain injury on self-identity: a systematic review of the evidence for self-concept changes. The Journal of Head Trauma Rehabilitation, 31(2), E12βE25. https://doi.org/10.1097/HTR.0000000000000158.Beck, A. T. (1979). Cognitive therapy of depression. New York: Guilford Press.Beevers, C. G. (2005). Cognitive vulnerability to depression: A dual process model. Clinical Psychology Review, 25(7), 975β1002. https://doi.org/10.1016/j.cpr.2005.03.003.Bos, A. E. R., Huijding, J., Muris, P., Vogel, L. R. R., & Biesheuvel, J. (2010). Global, contingent and implicit self-esteem and psychopathological symptoms in adolescents. Personality and Individual Differences, 48(3), 311β316. https://doi.org/10.1016/j.paid.2009.10.025.Bowerman, B. L., & OβConnell, R. T. (1990). Linear statistical models: An applied approach (2nd ed.). Belmont, CA: Duxbury.Brenner, R. E., Heath, P. J., Vogel, D. L., & CredΓ©, M. (2017). Two is more valid than one: examining the factor structure of the self-compassion scale (SCS). Journal of Counseling Psychology, 64(6), 696β707. https://doi.org/10.1037/cou0000211.Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 1β38. https://doi.org/10.5334/joc.72.Carroll, E., & Coetzer, R. (2011). Identity, grief and self-awareness after traumatic brain injury. Neuropsychological Rehabilitation, 21(3), 289β305. https://doi.org/10.1080/09602011.2011.555972.Corrigan, P. W., & Watson, A. C. (2002). The paradox of self-stigma and mental illness. Clinical Psychology: Science and Practice, 9(1), 35β53. https://doi.org/10.1093/clipsy/9.1.35.Creemers, D. H. M., Scholte, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2012). Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness. Journal of Behavior Therapy and Experimental Psychiatry, 43(1), 638β646. https://doi.org/10.1016/j.jbtep.2011.09.006.Creemers, D. H. M., Scholt, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2013). Damaged self-esteem is associated with internalizing problems. Frontiers in Psychology, 4, 152. https://doi.org/10.3389/fpsyg.2013.00152.Curvis, W., Simpson, J., & Hampson, N. (2018). Factors associated with self-esteem following acquired brain injury in adults: a systematic review. Neuropsychological Rehabilitation, 28(1), 142β183. https://doi.org/10.1080/09602011.2016.1144515.Elbaum, J., & Benson, D. (Eds.). (2007). Acquired brain injury: an integrative neuro-rehabilitation approach. New York: Springer. https://doi.org/10.1007/978-0-387-37575-5.Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149β1160. https://doi.org/10.3758/BRM.41.4.1149.FEDACE. (2015). Las personas con daΓ±o cerebral adquirido en EspaΓ±a. Ministerio de Sanidad, Servicios Sociales e Igualdad. Retrieved May 21, 2020, from:Β https://fedace.org/index.php?V_dir=MSC&V_mod=download&f=2016-9/26-16-4-11.admin.Informe_FEDACE_RPD_para_DDC-1.pdf.Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L., Truelsen, T., OβDonnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., & Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet, 383(9913), 245β254. https://doi.org/10.1016/S0140-6736(13)61953-4.Fennell, M. J. V. (1997). Low self-esteem: a cognitive perspective. Behavioural and Cognitive Psychotherapy, 25(1), 1β26. https://doi.org/10.1017/s1352465800015368.Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). βMini-mental stateβ. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189β198. https://doi.org/10.1016/0022-3956(75)90026-6.Garcia-Campayo, J., Navarro-Gil, M., AndrΓ©s, E., Montero-Marin, J., LΓ³pez-Artal, L., Marcos, M., & Demarzo, P. (2014). Validation of the Spanish versions of the long (26 items) and short (12 items) forms of the Self-Compassion Scale (SCS). Health and Quality of Life Outcomes, 12(4). https://doi.org/10.1186/1477-7525-12-4.GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2018). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990β2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56β87. https://doi.org/10.1016/S1474-4422(18)30415-0.Gould, K. R., Ponsford, J. L., Johnston, L., & SchΓΆnberger, M. (2011). Relationship between psychiatric disorders and 1-year psychosocial outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 26(1), 79β89. https://doi.org/10.1097/HTR.0b013e3182036799.Gracey, F., Palmer, S., Rous, B., Psaila, K., Shaw, K., OβDell, J., Cope, J., & Mohamed, S. (2008). βFeeling part of thingsβ: personal construction of self after brain injury. Neuropsychological Rehabilitation, 18(5β6), 627β650. https://doi.org/10.1080/09602010802041238.Gracey, F., Evans, J. J., & Malley, D. (2009). Capturing process and outcome in complex rehabilitation interventions: a βY-shapedβ model. Neuropsychological Rehabilitation, 19(6), 867β890. https://doi.org/10.1080/09602010903027763.Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79(6), 1022β1038. https://doi.org/10.1037/0022-3514.79.6.1022.Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: the Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 1464β1480. https://doi.org/10.1037/0022-3514.74.6.1464.Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197β216. https://doi.org/10.1037/0022-3514.85.2.197.Hackett, M. L., Yapa, C., Parag, V., & Anderson, C. S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke, 36(6), 1330β1340. https://doi.org/10.1161/01.STR.0000165928.19135.35.Haeffel, G. J., Abramson, L. Y., Brazy, P. C., Shah, J. Y., Teachman, B. A., & Nosek, B. A. (2007). Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression. Behaviour Research and Therapy, 45(6), 1155β1167. https://doi.org/10.1016/j.brat.2006.09.003.Ingram, R. E. (1984). Toward an information-processing analysis of depression. Cognitive Therapy and Research, 8(5), 443β477. https://doi.org/10.1007/BF01173284.Izuma, K., Kennedy, K., Fitzjohn, A., Sedikides, C., & Shibata, K. (2018). Neural activity in the reward-related brain regions predicts implicit self-esteem: a novel validity test of psychological measures using neuroimaging. Journal of Personality and Social Psychology, 114(3), 343β357. https://doi.org/10.1037/pspa0000114.Khan-Bourne, N., & Brown, R. G. (2003). Cognitive behaviour therapy for the treatment of depression in individuals with brain injury. Neuropsychological Rehabilitation, 13(1β2), 89β107. https://doi.org/10.1080/09602010244000318.Kim, H. S., & Moore, M. T. (2019). Symptoms of depression and the discrepancy between implicit and explicit self-esteem. Journal of Behavior Therapy and Experimental Psychiatry, 63, 1β5. https://doi.org/10.1016/j.jbtep.2018.12.001.Lane, K. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007). Understanding and using the Implicit Association Test: IV. What we know (so far) about the method. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 59β102). New York: The Guildford Press.Leary, M. R., Tate, E. B., Adams, C. E., Batts Allen, A., & Hancock, J. (2007). Self-compassion and reactions to unpleasant self-relevant events: the implications of treating oneself kindly. Personality Processes and Individual Differences, 92(5), 887β904. https://doi.org/10.1037/0022-3514.92.5.887.Lennon, A., Bramham, J., Carroll, Γ., McElligott, J., Carton, S., Waldron, B., Fortune, D., Burke, T., Fitzhenry, M., & Benson, C. (2014). A qualitative exploration of how individuals reconstruct their sense of self following acquired brain injury in comparison with spinal cord injury. Brain Injury, 28(1), 27β37. https://doi.org/10.3109/02699052.2013.848378.Longworth, C., Deakins, J., Rose, D., & Gracey, F. (2018). The nature of self-esteem and its relationship to anxiety and depression in adult acquired brain injury. Neuropsychological Rehabilitation, 28(7), 1078β1094. https://doi.org/10.1080/09602011.2016.1226185.MacBeth, A., & Gumley, A. (2012). Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology. Clinical Psychology Review, 32(6), 545β552. https://doi.org/10.1016/j.cpr.2012.06.003.McDonald, S., Saad, A., & James, C. (2011). Social dysdecorum following severe traumatic brain injury: loss of implicit social knowledge or loss of control? Journal of Clinical and Experimental Neuropsychology, 33(6), 619β630. https://doi.org/10.1080/13803395.2011.553586.Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), 1β6.Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297β326. https://doi.org/10.1037/0033-2909.132.2.297.Muris, P., & Petrocchi, N. (2017). Protection or vulnerability? A meta-analysis of the relations between the positive and negative components of self-compassion and psychopathology. Clinical Psychology & Psychotherapy, 24(2), 373β383. https://doi.org/10.1002/cpp.2005.Myers, R. (2000). Classical and modern regression with applications (2nd ed.). Belmont, CA: Duxbury.Neff, K. D. (2003). Self-compassion: an alternative conceptualization of a healthy attitude toward oneself. Self and Identity, 2(2), 85β101. https://doi.org/10.1080/15298860309032.Neff, K. D., & Vonk, R. (2009). Self-compassion versus global self-esteem: two different ways of relating to oneself. Journal of Personality, 77, 23β50. https://doi.org/10.1111/j.1467-6494.2008.00537.x.Neff, K. D., TΓ³th-KirΓ‘ly, I., Yarnell, L. M., Arimitsu, K., Castilho, P., Ghorbani, N., Guo, H. X., Hirsch, J. K., Hupfeld, J., Hutz, C. S., Kotsou, I., Lee, W. K., Montero-Marin, J., Sirois, F. M., De Souza, L. K., Svendsen, J. L., Wilkinson, R. B., & Mantzios, M. (2019). Examining the factor structure of the Self-Compassion Scale in 20 diverse samples: support for use of a total score and six subscale scores. Psychological Assessment, 31(1), 27β45. https://doi.org/10.1037/pas0000629.Norton, P. J., & Paulus, D. J. (2017). Transdiagnostic models of anxiety disorder: theoretical and empirical underpinnings. Clinical Psychology Review, 56, 122β137. https://doi.org/10.1016/j.cpr.2017.03.004.Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625β664. https://doi.org/10.1521/soco.19.6.625.20886.Oddy, M., & Herbert, C. (2003). Intervention with families following brain injury: evidence-based practice. Neuropsychological Rehabilitation, 13(1β2), 259β273. https://doi.org/10.1080/09602010244000345.Ouimet, A. J., Gawronski, B., & Dozois, D. J. A. (2009). Cognitive vulnerability to anxiety: a review and an integrative model. Clinical Psychology Review, 29(6), 459β470. https://doi.org/10.1016/j.cpr.2009.05.004.Ponsford, J., Kelly, A., & Couchman, G. (2014). Self-concept and self-esteem after acquired brain injury: a control group comparison. Brain Injury, 28(2), 146β154. https://doi.org/10.3109/02699052.2013.859733.Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical Psychology & Psychotherapy, 18(3), 250β255. https://doi.org/10.1002/cpp.702.Romero, M., SΓ‘nchez, A., MarΓn, C., Navarro, M. D., Ferri, J., & NoΓ©, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. NeurologΓa (English Edition), 27(4), 216β224. https://doi.org/10.1016/j.nrleng.2011.06.001.Rosenberg, M. (1965). Rosenberg Self-Esteem Scale (RSE). Acceptance and Commitment Therapy. Measures Package, 61, 52 /S0034-98872009000600009.Sandstrom, M. J., & Jordan, R. (2008). Defensive self-esteem and aggression in childhood. Journal of Research in Personality, 42(2), 506β514. https://doi.org/10.1016/j.jrp.2007.07.008.SchΓΆnberger, M., & Ponsford, J. (2010). The factor structure of the Hospital Anxiety and Depression Scale in individuals with traumatic brain injury. Psychiatry Research, 179(3), 342β349. https://doi.org/10.1016/j.psychres.2009.07.003.SchrΓΆder-AbΓ©, M., Rudolph, A., & SchΓΌtz, A. (2007). High implicit self-esteem is not necessarily advantageous: discrepancies between explicit and implicit self-esteem and their relationship with anger expression and psychological health. European Journal of Personality, 21(3), 319β339. https://doi.org/10.1002/per.626.Scoglio, A. A. J., Rudat, D. A., Garvert, D., Jarmolowski, M., Jackson, C., & Herman, J. L. (2018). Self-compassion and responses to trauma: the role of emotion regulation. Journal of Interpersonal Violence, 33(13), 2016β2036. https://doi.org/10.1177/0886260515622296.Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: a systematic review. Clinical Psychology Review, 57, 141β163. https://doi.org/10.1016/j.cpr.2017.09.002.Smeijers, D., Vrijsen, J. N., van Oostrom, I., Isaac, L., Speckens, A., Becker, E. S., & Rinck, M. (2017). Implicit and explicit self-esteem in remitted depressed patients. Journal of Behavior Therapy and Experimental Psychiatry, 54, 301β306. https://doi.org/10.1016/j.jbtep.2016.10.006.Smith, E. R., & DeCoster, J. (2000). Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Personality and Social Psychology Review, 4(2), 108β131. https://doi.org/10.1207/S15327957PSPR0402_01.Sowislo, J. F., & Orth, U. (2013). Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychological Bulletin, 139(1), 213β240. https://doi.org/10.1037/a0028931.Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220β247. https://doi.org/10.1207/s15327957pspr0803_1.Terol-Cantero, M. C., Cabrera-Perona, V., & MartΓn-AragΓ³n, M. (2015). Hospital Anxiety and Depression Scale (HADS) review in Spanish samples. Anales de PsicologΓa, 31(2), 494β503. https://doi.org/10.6018/analesps.31.2.172701.TΓ³th-KirΓ‘ly, I., & Neff, K. D. (2020). Is self-compassion universal? Support for the measurement invariance of the Self-Compassion Scale across populations. Assessment. Advance online publication.Β https://doi.org/10.1177/1073191120926232.Turner-Stokes, L., & Wade, D. (2003). Rehabilitation following acquired brain injury: National Clinical Guidelines. Clinical Medicine, 4(1), 61β65. https://doi.org/10.7861/clinmedicine.4-1-61.Tyerman, A., & Humphrey, M. (1984). Changes in self-concept following severe head injury. International Journal of Rehabilitation Research, 7(1), 11β23. https://doi.org/10.1097/00004356-198403000-00002.Valiente, C., Cantero, D., VΓ‘zquez, C., Sanchez, Γ., Provencio, M., & Espinosa, R. (2011). Implicit and explicit self-esteem discrepancies in paranoia and depression. Journal of Abnormal Psychology, 120(3), 691β699. https://doi.org/10.1037/a0022856.Vickery, C. D., Sepehri, A., & Evans, C. C. (2008). Self-esteem in an acute stroke rehabilitation sample: a control group comparison. Clinical Rehabilitation, 22(2), 179β187. https://doi.org/10.1177/0269215507080142.Whelan-Goodinson, R., Ponsford, J., & SchΓΆnberger, M. (2009). Validity of the Hospital Anxiety and Depression Scale to assess depression and anxiety following traumatic brain injury as compared with the Structured Clinical Interview for DSM-IV. Journal of Affective Disorders, 114(1β3), 94β102. https://doi.org/10.1016/j.jad.2008.06.007.Zeigler-Hill, V. (2006). Discrepancies between implicit and explicit self-esteem: Implications for narcissism and self-esteem instability. Journal of Personality, 74(1), 119β144. https://doi.org/10.1111/j.1467-6494.2005.00371.x.Zessin, U., DickhΓ€user, O., & Garbade, S. (2015). The relationship between self-compassion and well-being: a meta-analysis. Applied Psychology. Health and Well-Being, 7(3), 340β364. https://doi.org/10.1111/aphw.12051.Zhang, J. W., Chen, S., & Tomova Shakur, T. K. (2020). From me to you: Self-compassion predicts acceptance of own and othersβ imperfections. Personality and Social Psychology Bulletin, 46(2), 228β242. https://doi.org/10.1177/0146167219853846.Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361β370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
Human RNA Polymerase II-Association Factor 1 (hPaf1/PD2) Regulates Histone Methylation and Chromatin Remodeling in Pancreatic Cancer
Change in gene expression associated with pancreatic cancer could be attributed to the variation in histone posttranslational modifications leading to subsequent remodeling of the chromatin template during transcription. However, the interconnected network of molecules involved in regulating such processes remains elusive. hPaf1/PD2, a subunit of the human PAF-complex, involved in the regulation of transcriptional elongation has oncogenic potential. Our study explores the possibility that regulation of histone methylation by hPaf1 can contribute towards alteration in gene expression by nucleosomal rearrangement. Here, we show that knockdown of hPaf1/PD2 leads to decreased di- and tri-methylation at histone H3 lysine 4 residues in pancreatic cancer cells. Interestingly, hPaf1/PD2 colocalizes with MLL1 (Mixed Lineage Leukemia 1), a histone methyltransferase that methylates H3K4 residues. Also, a reduction in hPaf1 level resulted in reduced MLL1 expression and a corresponding decrease in the level of CHD1 (Chromohelicase DNA-binding protein 1), an ATPase dependent chromatin remodeling enzyme that specifically binds to H3K4 di and trimethyl marks. hPaf1/PD2 was also found to interact and colocalize with CHD1 in both cytoplasmic and nuclear extracts of pancreatic cancer cells. Further, reduced level of CHD1 localization in the nucleus in hPaf1/PD2 Knockdown cells could be rescued by ectopic expression of hPaf1/PD2. Micrococcal nuclease digestion showed an altered chromatin structure in hPaf1/PD2-KD cells. Overall, our results suggest that hPaf1/PD2 in association with MLL1 regulates methylation of H3K4 residues, as well as interacts and regulates nuclear shuttling of chromatin remodeling protein CHD1, facilitating its function in pancreatic cancer cells
The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain
CFP1 is a CXXC domain-containing protein and an essential component of the SETD1 histone H3K4 methyltransferase complex. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. Here, we report crystal structures of the CFP1 CXXC domain in complex with six different CpG DNA sequences. The crescent-shaped CFP1 CXXC domain is wedged into the major groove of the CpG DNA, distorting the B-form DNA, and interacts extensively with the major groove of the DNA. The structures elucidate the molecular mechanism of the non-methylated CpG-binding specificity of the CFP1 CXXC domain. The CpG motif is confined by a tripeptide located in a rigid loop, which only allows the accommodation of the non-methylated CpG dinucleotide. Furthermore, we demonstrate that CFP1 has a preference for a guanosine nucleotide following the CpG motif
Wideband-tuneable, nanotube mode-locked, fibre laser
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1β3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4β6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3β1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11β16. Here, we engineer a nanotubeβpolycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems
Increased dynamics in the 40-57 Ξ©-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation
Thrombocytopenia 4 is an inherited autosomal dominant thrombocytopenia, which occurs due to mutations in the human gene for cytochrome c that results in enhanced mitochondrial apoptotic activity. The Gly41Ser mutation was the first to be reported. Here we report stopped-flow kinetic studies of azide binding to human ferricytochrome c and its Gly41Ser variant, together with backbone amide H/D exchange and 15N-relaxation dynamics using NMR spectroscopy, to show that alternative conformations are kinetically and thermodynamically more readily accessible for the Gly41Ser variant than for the wild-type protein. Our work reveals a direct conformational link between the 40-57 Ξ©-loop in which residue 41 resides and the dynamical properties of the axial ligand to the heme iron, Met80, such that the replacement of glycine by serine promotes the dissociation of the Met80 ligand, thereby increasing the population of a peroxidase active state, which is a key non-native conformational state in apoptosis
Molecular Architectures of Trimeric SIV and HIV-1 Envelope Glycoproteins on Intact Viruses: Strain-Dependent Variation in Quaternary Structure
The initial step in target cell infection by human, and the closely related simian immunodeficiency viruses (HIV and SIV, respectively) occurs with the binding of trimeric envelope glycoproteins (Env), composed of heterodimers of the viral transmembrane glycoprotein (gp41) and surface glycoprotein (gp120) to target T-cells. Knowledge of the molecular structure of trimeric Env on intact viruses is important both for understanding the molecular mechanisms underlying virus-cell interactions and for the design of effective immunogen-based vaccines to combat HIV/AIDS. Previous analyses of intact HIV-1 BaL virions have already resulted in structures of trimeric Env in unliganded and CD4-liganded states at βΌ20 Γ
resolution. Here, we show that the molecular architectures of trimeric Env from SIVmneE11S, SIVmac239 and HIV-1 R3A strains are closely comparable to that previously determined for HIV-1 BaL, with the V1 and V2 variable loops located at the apex of the spike, close to the contact zone between virus and cell. The location of the V1/V2 loops in trimeric Env was definitively confirmed by structural analysis of HIV-1 R3A virions engineered to express Env with deletion of these loops. Strikingly, in SIV CP-MAC, a CD4-independent strain, trimeric Env is in a constitutively βopenβ conformation with gp120 trimers splayed out in a conformation similar to that seen for HIV-1 BaL Env when it is complexed with sCD4 and the CD4i antibody 17b. Our findings suggest a structural explanation for the molecular mechanism of CD4-independent viral entry and further establish that cryo-electron tomography can be used to discover distinct, functionally relevant quaternary structures of Env displayed on intact viruses
- β¦