20,441 research outputs found

    In silico estimates of the free energy rates in growing tumor spheroids

    Full text link
    The physics of solid tumor growth can be considered at three distinct size scales: the tumor scale, the cell-extracellular matrix (ECM) scale and the sub-cellular scale. In this paper we consider the tumor scale in the interest of eventually developing a system-level understanding of the progression of cancer. At this scale, cell populations and chemical species are best treated as concentration fields that vary with time and space. The cells have chemo-mechanical interactions with each other and with the ECM, consume glucose and oxygen that are transported through the tumor, and create chemical byproducts. We present a continuum mathematical model for the biochemical dynamics and mechanics that govern tumor growth. The biochemical dynamics and mechanics also engender free energy changes that serve as universal measures for comparison of these processes. Within our mathematical framework we therefore consider the free energy inequality, which arises from the first and second laws of thermodynamics. With the model we compute preliminary estimates of the free energy rates of a growing tumor in its pre-vascular stage by using currently available data from single cells and multicellular tumor spheroids.Comment: 27 pages with 5 figures and 2 tables. Figures and tables appear at the end of the pape

    The Fabry disease-associated lipid Lyso-Gb3 enhances voltage-gated calcium currents in sensory neurons and causes pain

    Get PDF
    Fabry disease is an X-linked lysosomal storage disorder characterised by accumulation of glycosphingolipids, and accompanied by clinical manifestations, such as cardiac disorders, renal failure, pain and peripheral neuropathy. Globotriaosylsphingosine (lyso-Gb3), a deacylated form of globotriaosylceramide (Gb3), has emerged as a marker of Fabry disease. We investigated the link between Gb3, lyso-Gb3 and pain. Plantar administration of lyso-Gb3 or Gb3 caused mechanical allodynia in healthy mice. In vitro application of 100nM lyso-Gb3 caused uptake of extracellular calcium in 10% of sensory neurons expressing nociceptor markers, rising to 40% of neurons at 1μM, a concentration that may occur in Fabry disease patients. Peak current densities of voltage-dependent Ca(2+) channels were substantially enhanced by application of 1μM lyso-Gb3. These studies suggest a direct role for lyso-Gb3 in the sensitisation of peripheral nociceptive neurons that may provide an opportunity for therapeutic intervention in the treatment of Fabry disease-associated pain

    Nonlocal feedback in ferromagnetic resonance

    Full text link
    Ferromagnetic resonance in thin films is analyzed under the influence of spatiotemporal feedback effects. The equation of motion for the magnetization dynamics is nonlocal in both space and time and includes isotropic, anisotropic and dipolar energy contributions as well as the conserved Gilbert- and the non-conserved Bloch-damping. We derive an analytical expression for the peak-to-peak linewidth. It consists of four separate parts originated by Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a contribution arising from retardation. In an intermediate frequency regime the results are comparable with the commonly used Landau-Lifshitz-Gilbert theory combined with two-magnon processes. Retardation effects together with Gilbert damping lead to a linewidth the frequency dependence of which becomes strongly nonlinear. The relevance and the applicability of our approach to ferromagnetic resonance experiments is discussed.Comment: 22 pages, 9 figure

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA

    Strongly Enhanced Hole-Phonon Coupling in the Metallic State of the Dilute Two-Dimensional Hole Gas

    Full text link
    We have studied the temperature dependent phonon emission rate PP(TT) of a strongly interacting (rsr_s\geq22) dilute 2D GaAs hole system using a standard carrier heating technique. In the still poorly understood metallic state, we observe that PP(TT) changes from PP(TT)T5\sim T^5 to PP(TT)T7\sim T^7 above 100mK, indicating a crossover from screened piezoelectric(PZ) coupling to screened deformation potential(DP) coupling for hole-phonon scattering. Quantitative comparison with theory shows that the long range PZ coupling between holes and phonons has the expected magnitude; however, in the metallic state, the short range DP coupling between holes and phonons is {\it almost twenty times stronger} than expected from theory. The density dependence of PP(TT) shows that it is {\it easier} to cool low density 2D holes in GaAs than higher density 2D hole systems.Comment: To appear in Phys. Rev. Let
    corecore