The physics of solid tumor growth can be considered at three distinct size
scales: the tumor scale, the cell-extracellular matrix (ECM) scale and the
sub-cellular scale. In this paper we consider the tumor scale in the interest
of eventually developing a system-level understanding of the progression of
cancer. At this scale, cell populations and chemical species are best treated
as concentration fields that vary with time and space. The cells have
chemo-mechanical interactions with each other and with the ECM, consume glucose
and oxygen that are transported through the tumor, and create chemical
byproducts. We present a continuum mathematical model for the biochemical
dynamics and mechanics that govern tumor growth. The biochemical dynamics and
mechanics also engender free energy changes that serve as universal measures
for comparison of these processes. Within our mathematical framework we
therefore consider the free energy inequality, which arises from the first and
second laws of thermodynamics. With the model we compute preliminary estimates
of the free energy rates of a growing tumor in its pre-vascular stage by using
currently available data from single cells and multicellular tumor spheroids.Comment: 27 pages with 5 figures and 2 tables. Figures and tables appear at
the end of the pape