40 research outputs found

    Functional validation of miRNAs targeting genes of DNA double-strand break repair to radiosensitize non-small lung cancer cells

    Get PDF
    Abstract DNA-Double strand breaks (DSBs) generated by radiation therapy represent the most efficient lesions to kill tumor cells, however, the inherent DSB repair efficiency of tumor cells can cause cellular radioresistance and impact on therapeutic outcome. Genes of DSB repair represent a target for cancer therapy since their down-regulation can impair the repair process making the cells more sensitive to radiation. In this study, we analyzed the combination of ionizing radiation (IR) along with microRNA-mediated targeting of genes involved in DSB repair to sensitize human non-small cell lung cancer (NSCLC) cells. MicroRNAs are natural occurring modulators of gene expression and therefore represent an attractive strategy to affect the expression of DSB repair genes. As possible IR-sensitizing targets genes we selected genes of homologous recombination (HR) and non-homologous end joining (NHEJ) pathway (i.e. RAD51, BRCA2, PRKDC, XRCC5, LIG1). We examined these genes to determine whether they may be real targets of selected miRNAs by functional and biological validation. The in vivo effectiveness of miRNA treatments has been examined in cells over-expressing miRNAs and treated with IR. Taken together, our results show that hsa-miR-96-5p and hsa-miR-874-3p can directly regulate the expression of target genes. When these miRNAs are combined with IR can decrease the survival of NSCLC cells to a higher extent than that exerted by radiation alone, and similarly to radiation combined with specific chemical inhibitors of HR and NHEJ repair pathway

    Inspiratory muscle training and its effect on indices of physiological and perceived stress during incremental walking exercise in normobaric hypoxia

    Get PDF
    This study evaluated the effects of inspiratory muscle training (IMT) on inspiratory muscle fatigue (IMF) and physiological and perceptual responses during trekking-specific exercise. An 8-week IMT program was completed by 21 males (age 32.4 ± 9.61 years, VO2peak 58.8 ± 6.75 mL/kg/min) randomised within matched pairs to either the IMT group (n = 11) or the placebo group [(P), n = 9]. Twice daily, participants completed 30 (IMT) or 60 (P) inspiratory efforts using a Powerbreathe initially set at a resistance of 50% (IMT) or used at 15% (P) of maximal inspiratory pressure (MIP) throughout. A loaded (12.5 kg) 39-minute incremental walking protocol (3–5 km/hour and 1–15% gradient) was completed in normobaric hypoxia (PIO2 = 110 mmHg, 3000 m) before and after training. MIP increased from 164 to 188 cmH2O (18%) and from 161 to 171 cmH2O (6%) in the IMT and P groups (P = 0.02). The 95% CI for IMT showed a significant improvement in MIP (5.21±43.33 cmH2O), but not for P. IMF during exercise (MIP) was*5%, showing no training effect for either IMT or P (P = 0.23). Rating of perceived exertion (RPE) was consistently reduced (*1) throughout exercise following training for IMT, but not for P (P = 0.03). The mean blood lactate concentration during exercise was significantly reduced by 0.26 and 0.15 mmol/L in IMT and P (P = 0.00), with no differences between groups (P = 0.34). Rating of dyspnoea during exercise decreased (*0.4) following IMT but increased (*0.3) following P (P = 0.01). IMT may attenuate the increased physiological and perceived exercise stress experienced during normobaric hypoxia, which may benefit moderate altitude expedition

    Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network

    Get PDF
    Long non-coding RNAs (lncRNAs) are emerging as important players in the regulation of several aspects of cellular biology. For a better comprehension of their function, it is fundamental to determine their tissue or cell specificity and to identify their subcellular localization. In fact, the activity of lncRNAs may vary according to cell and tissue specificity and subcellular compartmentalization. Myofibers are the smallest complete contractile system of skeletal muscle influencing its contraction velocity and metabolism. How lncRNAs are expressed in different myofibers, participate in metabolism regulation and muscle atrophy or how they are compartmentalized within a single myofiber is still unknown. We compiled a comprehensive catalog of lncRNAs expressed in skeletal muscle, associating the fiber-type specificity and subcellular location to each of them, and demonstrating that many lncRNAs can be involved in the biological processes de-regulated during muscle atrophy. We demonstrated that the lncRNA Pvt1, activated early during muscle atrophy, impacts mitochondrial respiration and morphology and affects mito/autophagy, apoptosis and myofiber size in vivo. This work corroborates the importance of lncRNAs in the regulation of metabolism and neuromuscular pathologies and offers a valuable resource to study the metabolism in single cells characterized by pronounced plasticity

    Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is a neurodegenerative disorder associated with mutations of the survival motor neuron gene SMN and is characterized by muscle weakness and atrophy caused by degeneration of spinal motor neurons. SMN has a role in neurons but its deficiency may have a direct effect on muscle tissue. METHODS: We applied microarray and quantitative real-time PCR to study at transcriptional level the effects of a defective SMN gene in skeletal muscles affected by the two forms of SMA: the most severe type I and the mild type III. RESULTS: The two forms of SMA generated distinct expression signatures: the SMA III muscle transcriptome is close to that found under normal conditions, whereas in SMA I there is strong alteration of gene expression. Genes implicated in signal transduction were up-regulated in SMA III whereas those of energy metabolism and muscle contraction were consistently down-regulated in SMA I. The expression pattern of gene networks involved in atrophy signaling was completed by qRT-PCR, showing that specific pathways are involved, namely IGF/PI3K/Akt, TNF-alpha/p38 MAPK and Ras/ERK pathways. CONCLUSION: Our study suggests a different picture of atrophy pathways in each of the two forms of SMA. In particular, p38 may be the regulator of protein synthesis in SMA I. The SMA III profile appears as the result of the concurrent presence of atrophic and hypertrophic fibers. This more favorable condition might be due to the over-expression of MTOR that, given its role in the activation of protein synthesis, could lead to compensatory hypertrophy in SMA III muscle fibers

    Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sessile bivalves of the genus <it>Mytilus </it>are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of <it>M. galloprovincialis</it>, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes.</p> <p>Results</p> <p>We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in <it>M. galloprovincialis</it>. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with <it>Vibrio splendidus </it>at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the <it>Vibrio</it>-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways.</p> <p>Conclusions</p> <p>The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on <it>Vibrio</it>-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the <it>Mytilus </it>species to an evolving microbial world.</p

    Cardiac and smooth muscle cell contribution to the formation of the mouse pulmonary veins

    No full text
    Previous studies have demonstrated that the primordial pulmonary veins originate as an outgrowth of the atrial cells and anastomosis with the pulmonary venous plexus. As a consequence of this embryologic origin the tunica media of these vessels is composed of cardiac cells that express atrial specific markers (Lyons et al. [1990] J Cell Biol 111:2427-2436; Jones et al. [1994] Dev Dyn 200:117-128). We used transgenic mice for the cardiac troponin I (cTNI) gene and smooth muscle (SM) myosin heavy chain as differentiation markers, to analyze how cardiac and SM cells contribute to the formation and structural remodeling of the pulmonary veins during development. We show here that the tunica media of the adult mouse pulmonary veins contains an outer layer of cardiac cells and an intermediate SM cell compartment lining down on the inner endothelium. This structural organization is well expressed in the intrapulmonary veins from the beginning of vasculogenesis, with cardiac cells accumulating over preexisting roots of endothelial and SM cells and extending to the third bifurcation of the pulmonary branches without reaching the more distal tips of the vessels. On the other hand, SM cells, which are widely distributed in the intrapulmonary veins from the embryonic stage E16, accumulate also in the extrapulmonary branches and reach the posterior wall of the left atrium, including the orifices of the pulmonary veins. This event takes place around birth when the pulmonary blood flow starts to function properly. A model for the development of the pulmonary veins is presented, based upon our analysis

    A cardiac specific-troponin I promoter. Distinctive patterns of regulation in cultured fetal cardiomyocytes, adult heart and transgenic mice.

    No full text
    No abstract available. Expression of the cardiac troponin I gene is critically re-examined in cultured cardiomyocytes, developing and adult heart, based upon immunohistochemistry and molecular biology data

    Combinatorial cis-acting elements regulate tissue-specific expression of the cardiac troponin I gene in vitro and in vivo

    Get PDF
    The cardiac troponin I gene is one of the few sarcomeric protein genes exclusively expressed in cardiac muscle. We show here that this specificity is controlled by a proximal promoter (-230/+16) in transfected cardiac cells in culture, in the adult hearts, and in transgenic animals. Functional analysis indicates that MEF2/Oct-1, Sp1, and GATA regulatory elements are required for optimal gene activation because selective mutations produce weak or inactive promoters. MEF2 and Oct-1 transcription factors bind to the same A/T-rich element. A mutation that blocks this binding markedly reduces gene activation in vivo and in vitro, and overexpression of MEF2A, MEF2C, and MEF2D in noncardiac cells transactivates the cardiac troponin I promoter. Disruption of these elements inactivates the cardiac troponin I promoter in cultured cardiac cells but has a less important role in transfected adult heart. Moreover, nuclear extracts from an almost pure population of adult cardiac cells contain much lower levels of GATA binding activity compared with fetal cardiac cells. These findings point to a differential role of GATA factors in the maintenance of gene expression in the adult heart as compared with the activation of cardiac genes in fetal cardiomyocytes. Overexpression of GATA family members transactivates the cardiac troponin I promoter, and GATA-5 and GATA-6 are stronger transactivators than GATA-4, a property apparently unique to the cardiac troponin I promoter. Transgenic mice carrying the -230/+126 base pair promoter express beta-galactosidase reporter gene in the heart both at early stages of cardiogenesis and in the adult animals. These results indicate that the ability of the cardiac troponin I proximal promoter to target expression of a downstream gene in the heart is also maintained when the transgene is integrated into the genome
    corecore