409 research outputs found

    Field Evaluation of Traditionally Used Plant-Based Insect Repellents and Fumigants Against the Malaria Vector Anopheles darlingi in Riberalta, Bolivian Amazon

    Get PDF
    Inexpensive insect repellents may be needed to supplement the use of impregnated bed-nets in the Amazon region, where the primary malaria vector, Anopheles darlingi (Root), is exophilic and feeds in the early evening. Three plants that are traditionally used to repel mosquitoes in Riberalta, Bolivian Amazon, were identified by focus group, and then they were tested against An. darlingi as well as Mansonia indubitans (Dyar & Shannon)/Mansonia titillans (Walker). Cymbopogon citratus (Staph), Guatemalan lemongrass, essential oil at 25% was used as a skin repellent, and it provided 74% protection for 2.5 h against predominantly An. darlingi and 95% protection for 2.5 h against Mansonia spp. Attalea princeps (name not verified) husks, burned on charcoal in the traditional way provided 35 and 51% protection against An. darlingi and Mansonia spp., respectively. Kerosene lamps, often used to light rural homes, were used as a heat source to volatilize 100% Mentha arvensis (Malinv ex. Bailey) essential oil, and they reduced biting by 41% inside traditional homes against Mansonia spp., although they were ineffective outdoors against An. darlingi. All three plant-based repellents provided significant protection compared with controls. Plant-based repellents, although less effective than synthetic alternatives, were shown by focus groups to be more culturally acceptable in this setting, in particular para-menthane-3, 8, idol derived from lemon eucalyptus, Corymbia citriodora (Hook). Plant-based repellents have the potential to be produced locally and therefore sold more cheaply than synthetic commercial repellents. Importantly, their low cost may encourage user compliance among indigenous and marginalized populations

    Comparison between the HCV IRES domain IV RNA structure and the Iron Responsive Element

    Get PDF
    Background: Serum ferritin and hepatic iron concentrations are frequently elevated in patients who are chronically infected with the hepatitis C virus (HCV), and hepatic iron concentration has been used to predict response to interferon therapy, but these correlations are not well understood. The HCV genome contains an RNA structure resembling an iron responsive element (IRE) in its internal ribosome entry site (IRES) structural domain IV (dIV). An IRE is a stem loop structure used to control the expression of eukaryotic proteins involved in iron homeostasis by either inhibiting ribosomal binding or protecting the mRNA from nuclease degradation. The HCV structure, located within the binding site of the 40S ribosomal subunit, might function as an authentic IRE or by an IRE-like mechanism.----- Results: Electrophoretic mobility shift assays showed that the HCV IRES domain IV structure does not interact with the iron regulatory protein 1 (IRP1) in vitro. Systematic HCV IRES RNA mutagenesis suggested that IRP1 cannot accommodate the shape of the wild type HCV IRES dIV RNA structure.----- Conclusion The HCV IRES dIV RNA structure is not an authentic IRE. The possibility that this RNA structure is responsible for the observed correlations between intracellular iron concentration and HCV infection parameters through an IRE-like mechanism in response to some other cellular signal remains to be tested

    Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania

    Get PDF
    Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude. Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively. Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data

    Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy

    Get PDF
    Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of 13C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-13C]-pyruvate affords ribonucleotides with site specific labeling at C5′ (~95%) and C1′ (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-13C]-glycerol for which the ribose ring is labeled in all but the C4′ carbon position, leading to multiplet splitting of the C1′, C2′ and C3′ carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides

    A Trial of the Efficacy, Safety and Impact on Drug Resistance of Four Drug Regimens for Seasonal Intermittent Preventive Treatment for Malaria in Senegalese Children

    Get PDF
    UNLABELLED: In the Sahel, most malaria deaths occur among children 1-4 years old during a short transmission season. A trial of seasonal intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) and a single dose of artesunate (AS) showed an 86% reduction in the incidence of malaria in Senegal but this may not be the optimum regimen. We compared this regimen with three alternatives. METHODS: 2102 children aged 6-59 months received either one dose of SP plus one dose of AS (SP+1AS) (the previous regimen), one dose of SP plus 3 daily doses of AS (SP+3AS), one dose of SP plus three daily doses of amodiaquine (AQ) (SP+3AQ) or 3 daily doses of AQ and AS (3AQ+3AS). Treatments were given once a month on three occasions during the malaria transmission season. The primary end point was incidence of clinical malaria. Secondary end-points were incidence of adverse events, mean haemoglobin concentration and prevalence of parasites carrying markers of resistance to SP. FINDINGS: The incidence of malaria, and the prevalence of parasitaemia at the end of the transmission season, were lowest in the group that received SP+3AQ: 10% of children in the group that received SP+1AS had malaria, compared to 9% in the SP+3AS group (hazard ratio HR 0.90, 95%CI 0.60, 1.36); 11% in the 3AQ+3AS group, HR 1.1 (0.76-1.7); and 5% in the SP+3AQ group, HR 0.50 (0.30-0.81). Mutations associated with resistance to SP were present in almost all parasites detected at the end of the transmission season, but the prevalence of Plasmodium falciparum was very low in the SP+3AQ group. CONCLUSIONS: Monthly treatment with SP+3AQ is a highly effective regimen for seasonal IPT. Choice of this regimen would minimise the spread of drug resistance and allow artemisinins to be reserved for the treatment of acute clinical malaria

    Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR

    Get PDF
    Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules

    Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies

    Full text link
    The description of nonequilibrium processes in nano-sized objects, where the typical energies involved are a few times, is increasingly becoming central to disciplines as diverse as condensed-matter physics, materials science, and biophysics. Major recent developments towards a unified treatment of arbitrarily large fluctuations in small systems are described by fluctuation theorems that relate the probabilities of a system absorbing from or releasing to the bath a given amount of energy in a nonequilibrium process. Here we experimentally verify the Crooks Fluctuation Theorem (CFT) under weak and strong nonequilibrium conditions by using optical tweezers to measure the irreversible mechanical work during the unfolding and refolding of a small RNA hairpin and an RNA three-helix junction. We also show that the CFT provides a powerful way to obtain folding free energies in biomolecules by determining the crossing between the unfolding and refolding irreversible work distributions. The method makes it possible to obtain folding free energies in nonequilibrium processes that dissipate up to of the average total work exerted, thereby paving the way for reconstructing free energy landscapes along reaction coordinates in nonequilibrium single-molecule experiments.Comment: PDF file, 19 pages. Supplementary information available online at www.nature.co

    Spinal CX3CL1/CX3CR1 may not directly participate in the development of morphine tolerance in rats

    Get PDF
    CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly

    Internalization Dissociates β2-Adrenergic Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that β2-adrenergic receptors (β2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of β2ARs between subcellular compartments. BRET between β2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between β2ARs and endosome markers increases. Energy transfer between β2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled β2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that β2ARs associate transiently with each other in the plasma membrane, or that β2AR dimers or oligomers are actively disrupted during internalization

    Improved methodical approach for quantitative BRET analysis of G protein coupled receptor dimerization

    Get PDF
    G Protein Coupled Receptors (GPCR) can form dimers or higher ordered oligomers, the process of which can remarkably influence the physiological and pharmacological function of these receptors. Quantitative Bioluminescence Resonance Energy Transfer (qBRET) measurements are the gold standards to prove the direct physical interaction between the protomers of presumed GPCR dimers. For the correct interpretation of these experiments, the expression of the energy donor Renilla luciferase labeled receptor has to be maintained constant, which is hard to achieve in expression systems. To analyze the effects of non-constant donor expression on qBRET curves, we performed Monte Carlo simulations. Our results show that the decrease of donor expression can lead to saturation qBRET curves even if the interaction between donor and acceptor labeled receptors is non-specific leading to false interpretation of the dimerization state. We suggest here a new approach to the analysis of qBRET data, when the BRET ratio is plotted as a function of the acceptor labeled receptor expression at various donor receptor expression levels. With this method, we were able to distinguish between dimerization and non-specific interaction when the results of classical qBRET experiments were ambiguous. The simulation results were confirmed experimentally using rapamycin inducible heterodimerization system. We used this new method to investigate the dimerization of various GPCRs, and our data have confirmed the homodimerization of V2 vasopressin and CaSR calcium sensing receptors, whereas our data argue against the heterodimerization of these receptors with other studied GPCRs, including type I and II angiotensin, β2 adrenergic and CB1 cannabinoid receptors
    corecore