5,511 research outputs found

    The challenges of analyzing behavioral response study data : an overview of the MOCHA (Multi-study OCean acoustics Human effects Analysis) project

    Get PDF
    Date of Acceptance:This paper describes the MOCHA project which aims to develop novel approaches for the analysis of data collected during Behavioral Response Studies (BRSs). BRSs are experiments aimed at directly quantifying the effects of controlled dosages of natural or anthropogenic stimuli (typically sound) on marine mammal behavior. These experiments typically result in low sample size, relative to variability, and so we are looking at a number of studies in combination to maximize the gain from each one. We describe a suite of analytical tools applied to BRS data on beaked whales, including a simulation study aimed at informing future experimental design.Postprin

    Efficient Mixing at low Reynolds numbers using polymer additives

    Full text link
    Mixing in fluids is a rapidly developing field of fluid mechanics \cite{Sreen,Shr,War}, being an important industrial and environmental problem. The mixing of liquids at low Reynolds numbers is usually quite weak in simple flows, and it requires special devices to be efficient. Recently, the problem of mixing was solved analytically for a simple case of random flow, known as the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Here we demonstrate experimentally that very viscous liquids at low Reynolds number, ReRe. Here we show that very viscous liquids containing a small amount of high molecular weight polymers can be mixed quite efficiently at very low Reynolds numbers, for a simple flow in a curved channel. A polymer concentration of only 0.001% suffices. The presence of the polymers leads to an elastic instability \cite{LMS} and to irregular flow \cite{Ours}, with velocity spectra corresponding to the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Our detailed observations of the mixing in this regime enable us to confirm sevearl important theoretical predictions: the probability distributions of the concentration exhibit exponential tails \cite{Fal,Fouxon}, moments of the distribution decay exponentially along the flow \cite{Fouxon}, and the spatial correlation function of concentration decays logarithmically.Comment: 11 pages, 5 figure

    A Heparin-Coated Circuit Reduces Complement Activation and the Release of Leukocyte Inflammatory Mediators During Extracorporeal Circulation in a Rabbit

    Full text link
    Heparin coating modifies complement activation during extracorporeal circulation much more effcclively than systemically administered heparin. This rabbit study was undertaken to address possible mechanisms responsible for this difference. We evaluated the effect of heparin coating on complement activation and subsequently the release of leukocyte inflammatory mediators during extracorporeal circulation through a simplified circuit. We found in the heparin-coated group a significantly reduced complement hemolytic activity (CH 50 ), remaining higher leukocyte numbers, significantly decreased release of -glucuronidase, and most strikingly a complete prevention of tumor necrosis factor (TNF) formation. The significantly reduced CH 50 activity in the heparin-coated groups indicates the reduction of one or more native classical complement products. This could be explained by the absorption of complement components by the circuit, which results in reduced activity of the complement cascade. We conclude therefore that heparin coating reduces complement activation and consequently reduces the release of leukocyte inflammatory mediators.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73454/1/j.1525-1594.1992.tb00533.x.pd

    A new high: Cannabis as a budding source of carbon-based materials for electrochemical power sources

    Get PDF
    Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present
    • …
    corecore