423 research outputs found
The Key Role of Heavy Precipitation Events in Climate Model Disagreements of Future Annual Precipitation Changes in California
Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy (\u3e60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California\u27s mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)], although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days (\u3e60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions
Probabilistic estimates of future changes in California temperature and precipitation usingstatistical and dynamical downscaling
Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling
Measured Effects of Surface Cloth Impressions on Polar Backscatter and Comparison with a Reflection Grating Model
Integrated polar backscatter has been shown to have potential applications to composites, especially for the detection of matrix cracking, delaminations, fiber waviness, fiber fracture, inclusions and porosity [1–11]. The method was attractive because it avoided several measurement limitations inherent to conventional pulse echo techniques. Polar backscatter, however, has not been without its disadvantages. It has been reported that surface texture introduces unwanted artifacts in images made using the polar backscatter method [12]. One suggested method to overcome this limitation was the use of stripable coatings, which are paints that approximately match the impedance of the composite surface and have the effect of physically “smoothing” the surface impressions away [13]. After ultrasonic testing, these paints can be removed, but this method entails additional part handling and increases the cost of production
Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low
ObjectiveTo determine the clinically recognizable error rate with the use of quantitative polymerase chain reaction (qPCR)–based comprehensive chromosomal screening (CCS).DesignRetrospective study.SettingMultiple fertility centers.Patient(s)All patients receiving euploid designated embryos.Intervention(s)Trophectoderm biopsy for CCS.Main Outcome Measure(s)Evaluation of the pregnancy outcomes following the transfer of qPCR-designated euploid embryos. Calculation of the clinically recognizable error rate.Result(s)A total of 3,168 transfers led to 2,354 pregnancies (74.3%). Of 4,794 CCS euploid embryos transferred, 2,976 gestational sacs developed, reflecting a clinical implantation rate of 62.1%. In the cases where a miscarriage occurred and products of conception were available for analysis, ten were ultimately found to be aneuploid. Seven were identified in the products of conception following clinical losses and three in ongoing pregnancies. The clinically recognizable error rate per embryo designated as euploid was 0.21% (95% confidence interval [CI] 0.10–0.37). The clinically recognizable error rate per transfer was 0.32% (95% CI 0.16–0.56). The clinically recognizable error rate per ongoing pregnancy was 0.13% (95% CI 0.03–0.37). Three products of conception from aneuploid losses were available to the molecular laboratory for detailed examination, and all of them demonstrated fetal mosaicism.Conclusion(s)The clinically recognizable error rate with qPCR-based CCS is real but quite low. Although evaluated in only a limited number of specimens, mosaicism appears to play a prominent role in misdiagnoses. Mosaic errors present a genuine limit to the effectiveness of aneuploidy screening, because they are not attributable to technical issues in the embryology or analytic laboratories
The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs
The Coma cluster was the target of a HST-ACS Treasury program designed for
deep imaging in the F475W and F814W passbands. Although our survey was
interrupted by the ACS instrument failure in 2007, the partially completed
survey still covers ~50% of the core high-density region in Coma. Observations
were performed for 25 fields that extend over a wide range of cluster-centric
radii (~1.75 Mpc) with a total coverage area of 274 arcmin^2. The majority of
the fields are located near the core region of Coma (19/25 pointings) with six
additional fields in the south-west region of the cluster. In this paper we
present reprocessed images and SExtractor source catalogs for our survey
fields, including a detailed description of the methodology used for object
detection and photometry, the subtraction of bright galaxies to measure faint
underlying objects, and the use of simulations to assess the photometric
accuracy and completeness of our catalogs. We also use simulations to perform
aperture corrections for the SExtractor Kron magnitudes based only on the
measured source flux and half-light radius. We have performed photometry for
~73,000 unique objects; one-half of our detections are brighter than the
10-sigma point-source detection limit at F814W=25.8 mag (AB). The slight
majority of objects (60%) are unresolved or only marginally resolved by ACS. We
estimate that Coma members are 5-10% of all source detections, which consist of
a large population of unresolved objects (primarily GCs but also UCDs) and a
wide variety of extended galaxies from a cD galaxy to dwarf LSB galaxies. The
red sequence of Coma member galaxies has a constant slope and dispersion across
9 magnitudes (-21<M_F814W<-13). The initial data release for the HST-ACS Coma
Treasury program was made available to the public in 2008 August. The images
and catalogs described in this study relate to our second data release.Comment: Accepted for publication in ApJS. A high-resolution version is
available at http://archdev.stsci.edu/pub/hlsp/coma/release2/PaperII.pd
The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding
Many pathogens take advantage of the dependence of the host on the interaction of hundreds of extracellular proteins with the glycosaminoglycans heparan sulphate to regulate homeostasis and use heparan sulphate as a means to adhere and gain access to cells. Moreover, mucosal epithelia such as that of the respiratory tract are protected by a layer of mucin polysaccharides, which are usually sulphated. Consequently, the polydisperse, natural products of heparan sulphate and the allied polysaccharide, heparin have been found to be involved and prevent infection by a range of viruses including S-associated coronavirus strain HSR1. Here we use surface plasmon resonance and circular dichroism to measure the interaction between the SARS-CoV-2 Spike S1 protein receptor binding domain (SARS-CoV-2 S1 RBD) and heparin. The data demonstrate an interaction between the recombinant surface receptor binding domain and the polysaccharide. This has implications for the rapid development of a first-line therapeutic by repurposing heparin and for next-generation, tailor-made, GAG-based antivirals
Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005
BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Scoring System Prognostic of Outcome in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Myelodysplastic Syndrome
To develop a system prognostic of outcome in those undergoing allogeneic hematopoietic cell transplantation (allo HCT) for myelodysplastic syndrome (MDS)
Strong detection of the CMB lensingxgalaxy weak lensingcross-correlation from ACT-DR4,PlanckLegacy and KiDS-1000
We measure the cross-correlation between galaxy weak lensing data from the
Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB)
lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck
Legacy survey. We use two samples of source galaxies, selected with photometric
redshifts, and , which produce a
combined detection significance of the CMB lensing/weak galaxy lensing
cross-spectrum of . With the lower redshift galaxy sample, for which
the cross-correlation is detected at a significance of , we present
joint cosmological constraints on the matter density parameter, , and the matter fluctuation amplitude parameter, , marginalising
over three nuisance parameters that model our uncertainty in the redshift and
shear calibration, and the intrinsic alignment of galaxies. We find our
measurement to be consistent with the best-fitting flat CDM
cosmological models from both Planck and KiDS-1000. We demonstrate the capacity
of CMB-weak lensing cross-correlations to set constraints on either the
redshift or shear calibration, by analysing a previously unused high-redshift
KiDS galaxy sample , with the cross-correlation detected at
a significance of . This analysis provides an independent assessment
for the accuracy of redshift measurements in a regime that is challenging to
calibrate directly owing to known incompleteness in spectroscopic surveys.Comment: 13 pages, 9 figures, 1 tables, submitted to A&
- …