2,555 research outputs found

    Entropy production and time-asymmetry in the presence of strong interactions

    Get PDF
    It is known that the equilibrium properties of open classical systems that are strongly coupled to a heat bath are described by a set of thermodynamic potentials related to the system's Hamiltonian of mean force. By adapting this framework to a more general class of non-equilibrium states, we show that the equilibrium properties of the bath can be well-defined, even when the system is arbitrarily far from equilibrium and correlated with the bath. These states, which retain a notion of temperature, take the form of conditional equilibrium distributions. For out-of-equilibrium processes we show that the average entropy production quantifies the extent to which the system-bath state is driven away from the conditional equilibrium distribution. In addition, we show that the stochastic entropy production satisfies a generalised Crooks relation and can be used to quantify time-asymmetry of correlated non-equilibrium processes. These results naturally extend the familiar properties of entropy production in weakly-coupled systems to the strong coupling regime. Experimental measurements of the entropy production at strong coupling could be pursued using optomechanics or trapped ion systems, which allow strong coupling to be engineered.Comment: 8 pages, 1 figure, comments welcom

    Leggett-Garg inequalities for quantum fluctuating work

    Get PDF
    The Leggett-Garg inequalities serve to test whether or not quantum correlations in time can be explained within a classical macrorealistic framework. We apply this test to thermodynamics and derive a set of Leggett- Garg inequalities for the statistics of fluctuating work done on a quantum system unitarily driven in time. It is shown that these inequalities can be violated in a driven two-level system, thereby demonstrating that there exists no general macrorealistic description of quantum work. These violations are shown to emerge within the standard Two-Projective-Measurement scheme as well as for alternative definitions of fluctuating work that are based on weak measurement. Our results elucidate the influences of temporal correlations on work extraction in the quantum regime and highlight a key difference between quantum and classical thermodynamics.Comment: v2, 1 figure, accepted version to appear in Entropy (Special Issue on "Quantum Thermodynamics II"

    Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework

    Get PDF
    A central topic in the emerging field of quantum thermodynamics is the definition of thermodynamic work in the quantum regime. One widely used solution is to define work for a closed system undergoing non-equilibrium dynamics according to the two-point energy measurement scheme. However, due to the invasive nature of measurement the two-point quantum work probability distribution leads to inconsistencies with two pillars of thermodynamics: it breaks the first law and the time-reversal symmetry expected for closed dynamics. We here introduce the quantum histories framework as a method to characterise the thermodynamic properties of the unmeasured, closed dynamics. Extending the classical phase space trajectories to continuous power operator trajectories allows us to derive an alternative quantum work distribution for closed quantum dynamics that fulfils the first law and is time-reversal symmetric. We find that the work distribution of the unmeasured dynamics leads to deviations from the classical Jarzynski equality and can have negative values highlighting distinctly non-classical features of quantum work.Comment: 18 pages, 2 figures, comments welcom

    Geometry of work fluctuations versus efficiency in microscopic thermal machines

    Get PDF
    When engineering microscopic machines, increasing efficiency can often come at a price of reduced reliability due to the impact of stochastic fluctuations. Here we develop a general method for performing multi-objective optimisation of efficiency and work fluctuations in thermal machines operating close to equilibrium in either the classical or quantum regime. Our method utilises techniques from thermodynamic geometry, whereby we match optimal solutions to protocols parameterised by their thermodynamic length. We characterise the optimal protocols for continuous-variable Gaussian machines, which form a crucial class in the study of thermodynamics for microscopic systems.Comment: Published version is open access; 13 pages, 5 figure

    Optimal control of dissipation and work fluctuations for rapidly driven systems

    Full text link
    To achieve efficient and reliable control of microscopic systems one should look for driving protocols that mitigate both the average dissipation and stochastic fluctuations in work. This is especially important in fast driving regimes in which the system is driven far out of equilibrium, potentially creating large amounts of unwanted entropy production. Here we characterise these optimal protocols in rapidly driven classical and quantum systems and prove that they consist of two discontinuous jumps in the full set of control variables. These jumps can be tuned to interpolate between processes with either minimal dissipation or minimal fluctuations, and in some situations allow for simultaneous minimisation. We illustrate our general results with rapidly driven closed quantum systems, classical bit erasure and a dissipative Ising chain driven close to a quantum phase transition.Comment: 16 pages, 3 figures, comments welcom

    Quantum work statistics at strong reservoir coupling

    Full text link
    Calculating the stochastic work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. It is shown that the work probability distribution is invariant under this transformation, allowing one to compute the full counting statistics of work at strong reservoir coupling. Crucially this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes.Comment: 15 pages, 3 figures, comments welcom

    Thermodynamic uncertainty relation in slowly driven quantum heat engines

    Get PDF
    Thermodynamic Uncertainty Relations express a trade-off between precision, defined as the noise-to-signal ratio of a generic current, and the amount of associated entropy production. These results have deep consequences for autonomous heat engines operating at steady-state, imposing an upper bound for their efficiency in terms of the power yield and its fluctuations. In the present manuscript we analyse a different class of heat engines, namely those which are operating in the periodic slow-driving regime. We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines: it allows for engines that produce finite power, with small power fluctuations, to operate close to the Carnot efficiency. The bound further incorporates the effect of quantum fluctuations, which reduces engine efficiency relative to the average power and reliability. We finally illustrate our findings in the experimentally relevant model of a single-ion heat engine.Comment: 11 pages, 2 figures. Updated to published version with additional mathematical background in the supplementary material. Some additional results from a previous draft have now been incorporated into another article, see arXiv:2011.1158
    • …
    corecore