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Thermodynamic Uncertainty Relations express a trade-off between precision, defined as the noise-to-
signal ratio of a generic current, and the amount of associated entropy production. These results have
deep consequences for autonomous heat engines operating at steady-state, imposing an upper bound for
their efficiency in terms of the power yield and its fluctuations. In the present manuscript we analyze
a different class of heat engines, namely those which are operating in the periodic slow-driving regime.
We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines:
it allows for engines that produce finite power, with small power fluctuations, to operate close to the
Carnot efficiency. The bound further incorporates the effect of quantum fluctuations, which reduces
engine efficiency relative to the average power and reliability. We finally illustrate our findings in the
experimentally relevant model of a single-ion heat engine.

Introduction: Much like their macroscopic counterparts,
microscopic heat engines function by converting a thermal
energy current Jq from their surrounding environment into
power Pw ≥ 0 [1–3]. In general, such engines can be di-
vided into two classes: steady-state heat engines (SSHEs)
and periodically driven heat engines (PDHEs). SSHEs are
comprised of a working substance that is placed in weak con-
tact with multiple reservoirs, so that the ensuing Markovian
dynamics results in the engine reaching a non-equilibrium
steady-state in the long time limit, thereby supporting a net
constant power current [4]. On the other hand, PDHEs
are operated by periodically changing both the mechanical
parameters of the working substance, as well as the temper-
ature of its surrounding reservoir, thus generating power by
external driving [5, 6]. In both cases, for any engine operat-
ing between a hot and cold temperature, Th > Tc, standard
thermodynamic laws ensure that the efficiency η := Pw/Jq
cannot exceed Carnot’s bound: η ≤ ηC := 1− (Tc/Th). In
addition to this, microscopic engines are significantly influ-
enced by stochastic fluctuations, which can be of thermal
or quantum origin. Understanding how these fluctuations
impact the performance of small-scale machines is a central
goal of both classical-stochastic [7], and quantum [8, 9],
thermodynamics, as they determine the engine’s reliability.

Recently, Pietzonka and Seifert found that the efficiency
of SSHEs is constrained by a bound tighter than Carnot [10]:

η ≤ ηC
1 + 2TcPw/∆Pw

=: ηPS . (1)

This bound incorporates an additional dependence on the
engine’s time-averaged work fluctuations ∆Pw. The quan-
tity ∆Pw represents the so-called constancy of the en-
gine [10], which inversely quantifies the engine’s reliability
in terms of power output. The bound Eq. (1) tells us that
in order to increase the efficiency of any SSHE, one must ei-
ther sacrifice the power output Pw or the engine’s reliability.
This can be seen as a consequence of the thermodynamic
uncertainty relation (TUR) [11–13], which states that en-
tropy production constrains the noise-to-signal ratio of any

current in SSHEs. Extensions and generalizations of Eq. (1)
to autonomous quantum systems operating at steady-state
have been investigated [14–18].

With regard to PDHEs, it is still currently debated
whether a similar universal trade-off is expected to hold:
on the one hand, it was found that both in the case of an
externally driven Brownian clock [19] and in driven cyclic
heat engines [20] one can achieve small fluctuations at fi-
nite power output in a dissipationless manner. On the other
hand, TUR-bounds for driven Langevin systems [21] and dis-
sipative two-level systems [22], as well as for classical time-
dependent driven engines [23] were found. In general, TURs
giving rise to Eq. (1) can be recovered for protocols that
are time-symmetric [24], or modified in order to account
for time-asymmetry in the small-amplitude regime [15]. Al-
ternatively, other bounds have also been derived with an
additional dependence on hysteresis [18, 25] or driving fre-
quency [26]. However, in all above cases a general quantum
mechanical trade-off between efficiency, average power and
its variance has not yet been achieved. Moreover, the im-
pact of quantum fluctuations on such a trade-off has yet
to be established. In this paper, we provide these impor-
tant missing pieces of the puzzle, by deriving the following
quantum version of Eq. (1) for PDHEs operating in the slow
driving, Markovian regime:

η ≤ ηC

1 + 2TcPwf
(∣∣PW

Pw

∣∣) /(∆Pw − 2∆Iw)
:= ηQ, (2)

where: PW denotes the adiabatic (also known as quasi-
static [27]) power; f(x) := (1−x)2; and 0 ≤ 2∆Iw ≤ ∆Pw
is a quantum correction term, which will be precisely defined
below. Firstly, we see that Eq. (2) is structurally different
from Eq. (1) as it now depends on the ratio between actual
and adiabatic power. Depending on this ratio, the bound
may exceed or fall below the SSHE bound Eq. (1). Fur-
thermore, the term ∆Iw represents a measure of quantum
fluctuations of the power as it depends purely on quantum
friction [28–31], and has recently been shown to lead to a
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quantum correction to the standard fluctuation-dissipation
relation for work [32, 33]. Crucially, ηQ is a decreasing func-
tion with respect to ∆Iw, meaning that quantum fluctua-
tions have a negative impact on the performance of PDHEs
in the slow driving regime, making it impossible to achieve
the optimal classical efficiency for a given average power
output and its variance.

Periodic quantum heat engines: We consider engines
where the working medium is a driven quantum system,
weakly coupled to a heat bath. Setting ~ = kB = 1,
this is described by a time-dependent adiabatic Lindblad
master equation of the form ρ̇t = Lλ(t)(ρt) [34], where
the time-dependence exhibited by the dynamical generator
Lλ(t) is protocol-dependent, and is induced by the exter-
nal modulation of the bath temperature T (t) and control
mechanical parameters Λ(t) which determine the Hamilto-
nian HΛ(t). An engine cycle of duration τ is then repre-
sented by a closed curve in the control parameters space
λ : t 7→ λ(t) := {T (t),Λ(t)}, such that it satisfies
λ(0) = λ(τ). In particular, following [5, 35], we param-
eterise the temperature modulation as

T (t) :=
TcTh

Th + (Tc − Th)α(t)
, Tc ≤ Th, (3)

with α(t) ∈ [0, 1], and α(0) = α(τ) = 0. This im-
plies that at t = 0, τ , the thermal bath that is in con-
tact with the system is at the cold temperature Tc, but
approaches the hot temperature Th in the middle of the
cycle. From now on we further assume that, for all t, the
quantum detailed balance condition [36, 37] is satisfied, and
that there exists a unique stationary state πλ(t), such that
Lλ(t)(πλ(t)) = 0, which is of Gibbs form. This means that

πλ(t) = e−β(t)HΛ(t)/Zλ(t), where β(t) := 1/T (t) is the in-

verse temperature and Zλ(t) := Tr
(
e−β(t)HΛ(t)

)
is the par-

tition function.
A central quantity of interest throughout our analysis is

the non-adiabatic entropy production rate, defined as

〈σ̇〉 :=
〈σ〉
τ

=
1

τ

(
∆S −

∫ τ

0

dt β(t)〈q̇(t)〉
)
≥ 0, (4)

where 〈q̇(t)〉 := Tr
(
ρ̇tHΛ(t)

)
is (in weak coupling) the rate

of heat entering the system and ∆S the increase in infor-
mation entropy. Eq. (4) quantifies the dissipation in terms
of excess heat in order to drive a system out of equilibrium,
and can be directly related to the degree of irreversibility of
a process [38, 39]. Using Eq. (3) and the periodic boundary
conditions, one can easily show that Eq. (4) takes the form

〈σ̇〉 =
1

Tc

(
ηC Jq − Pw

)
≥ 0, (5)

where we have introduced the time-average power and heat
flux supplied to the engine [5]:

Pw := −1

τ

∫ τ

0

dt Tr
(
ḢΛ(t)ρt

)
, (6)

Jq :=
1

τ

∫ τ

0

dt α(t)Tr
(
HΛ(t)ρ̇t

)
. (7)

Naturally, this decomposition leads us to define the effi-
ciency as the ratio η := Pw/Jq between power output and
heat flux entering the machine, which for an engine (defined
by the regime Pw ≥ 0) is bounded by the Carnot efficiency
η ≤ ηC := 1 − Tc/Th due to the second law Eq. (4). We
note that α(t) plays the role of a weighting function for
the heat flux Eq. (7), with increasing weight assigned to
increasing temperatures. This generalises the traditional
thermodynamic efficiency where the system interacts with
only two baths at distinct temperatures, which is recovered
by choosing α(t) to be a step function. In this case, it is
easy to see that Jq reduces to the heat flow from the hot
bath and the standard definition of efficiency is recovered
[5].

In this paper we are finally concerned with engines that
operate in the slow-driving regime, which are characterised
by choosing the driving protocol λ(t) as a slowly varying

periodic function, satisfying boundary conditions λ̇(0) =

λ̇(τ) = {0, 0}. This ensures that the system occupies the
same equilibrium state πλ(0) at the start and end of the
cycle, and remains close to the instantaneous steady-state
at all times during the cycle, taking the form ρt ' πλ(t) +
δρt, where δρt is a traceless correction term that vanishes
linearly with the driving speed [32, 40, 41]. This regime is
physically reached by setting the engine cycle duration τ to
be large relative to the intrinsic relaxation timescale teq of
the system [42]. In order to evaluate the leading order terms
of Eqs. (5) and (6) in the slow-driving regime, let us first
define a self-adjoint operator-valued function δAλ : [0, τ ] 3
t 7→ δAλ(t), where Aλ(t) can be any self-adjoint operator,

and δ : A 7→ δA := A − Tr
(
Aπλ(t)

)
I is a “spectrum

shift” that ensures Tr
(
δAλ(t)πλ(t)

)
= 0 for all Aλ(t). In

Appendix A, we show that under the assumption of detailed
balance and uniqueness of the instantaneous steady state
(Lλ(t)(πλ(t)) = 0), the following is a valid inner product
for such operator-valued functions:〈〈

δAλ, δBλ
〉〉
λ

:=
1

2τ

∫ τ

0

dt

∫ ∞
0

dθ

Tr
(
δAλ(t)(θ) Jλ(t)(δBλ(t)) + δBλ(t)(θ) Jλ(t)(δAλ(t))

)
,

(8)

where δAλ(t)(θ) := eθL
∗
λ(t)(δAλ(t)), with L ∗λ(t) the

generator in the Heisenberg picture, and Jλ(t)(·) :=∫ 1

0
ds πsλ(t)(·)π

1−s
λ(t) . The results of [32, 40, 41, 43, 44] pro-

vide a means of Taylor expanding Eqs. (5) and (6) up to
first order in teq/τ , which can be shown in terms of the
inner product Eq. (8) as

〈σ̇〉 =
〈〈
δẊλ, δẊλ

〉〉
λ
, Pw = PW −

〈〈
δḢλ, δẊλ

〉〉
λ
,

(9)

where Xλ(t) := β(t)HΛ(t), while δḢλ(t) ≡ δḢΛ(t). More-
over, we have introduced the adiabatic power as

PW := −1

τ

∫ τ

0

dt Tr
(
ḢΛ(t)πλ(t)

)
, (10)
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which is the engine’s power assuming that the system is in
equilibrium at all times (compare with Eq. (6)), achieved in
the limit teq/τ → 0.

So far we have only considered ensemble averages of ther-
modynamic quantities. For quantum-mechanical systems,
the higher order statistics associated with work become pre-
ponderant and fundamentally depend on the measurement
scheme used to monitor the system. In the case of open
quantum systems whose dynamics are described by a time-
dependent Lindblad master equation, the fluctuating work
can be determined at the stochastic level by monitoring se-
quences of quantum jumps exhibited by the system as it
interacts with an environment [45–54]. Each time a jump
occurs heat is exchanged between engine and environment,
and this can be experimentally monitored through an ex-
ternal quantum detector [55–57]. Alternatively, one may
determine the fluctuating work from two-time global en-
ergy measurements, on both the system and bath, at the
beginning and end of the cycle [58, 59]. In the Markovian
limit with weak coupling between system and bath, both ap-
proaches allow one to arrive at a general expression for the
time-averaged work variance, dependent only on the system
degrees of freedom [32, 60], which takes the following form
in the slow driving limit:

∆Pw = 2
(

∆Iw +
〈〈
δḢλ, δḢλ

〉〉
λ

)
. (11)

Here, we have identified a quantum correction term due to
the fluctuations,

∆Iw :=
1

τ

∫ τ

0

dt τeqλ(t) Iλ(t)(ḢΛ(t), ḢΛ(t)), (12)

where we introduce the skew covariance [61, 62]

Iλ(t)(A,B) := −1

2

∫ 1

0

ds Tr
(

[A, πsλ(t)][B, π
1−s
λ(t) ]

)
. (13)

The skew information Iλ(t)(A,A) ≥ 0 represents a measure

of quantum fluctuations in the sharp observable A = A†

with respect to instantaneous equilibrium πλ(t) [63–67]. In
particular, the skew information vanishes for [A, πλ(t)] = 0,

reduces to the usual variance 〈A2〉 − 〈A〉2 for pure states,
and is convex under classical mixing. In this context,
Iλ(t)(ḢΛ(t), ḢΛ(t)) measures the degree of quantum power
fluctuations due to the generation of quantum friction stem-
ming from [ḢΛ(t), HΛ(t)] 6= 0 [28–33]. Additionally, these
quantum fluctuations are weighted by an integral relaxation
timescale:

τeqλ(t) :=

∫ ∞
0

dθ
Iλ(t)(ḢΛ(t)(θ), ḢΛ(t)(0))

Iλ(t)(ḢΛ(t)(0), ḢΛ(t)(0))
≥ 0. (14)

This quantifies the timescale over which the quantum corre-
lation function for the power decays to its equilibrium value,
and can be viewed as a quantum generalisation of the in-
tegral relaxation time employed in classical non-equilibrium
thermodynamics [27, 68, 69].

Quantum bound on efficiency. We are now ready to
derive bounds on the performance of quantum PDHEs.
By noting that 〈σ̇〉, Pw, and (∆Pw − 2∆Iw) can all
be expressed through the inner product introduced in
Eq. (8) we can apply the Cauchy-Schwarz inequality〈〈
Aλ, Aλ

〉〉
λ

〈〈
Bλ, Bλ

〉〉
λ
≥ |
〈〈
Aλ, Bλ

〉〉
λ
|2, thus obtain-

ing our central result:

(∆Pw − 2∆Iw)〈σ̇〉 ≥ 2f

(∣∣∣∣PWPw
∣∣∣∣)P 2

w, (15)

where f(x) := (1 − x)2. The above inequality is a quan-
tum generalisation of the TUR for entropy production and
power in PDHEs. It demonstrates a trade-off between the
entropy production rate 〈σ̇〉 and the noise-to-signal ratio of
power,

√
∆Pw/Pw. This TUR has an immediate conse-

quence for the achievable engine efficiency: a simple rewrit-
ing of Eq. (5) as η = ηCPw/(Tc 〈σ̇〉+Pw), and combination
with Eq. (15) produces the desired efficiency bound Eq. (2).

When comparing Eq. (2) to the TUR bound for SSHEs
Eq. (1), we notice a modification stemming both from the
ratio between adiabatic and actual power |PW/Pw|, as well
as from the presence of ∆Iw. We show in Appendix A
that this quantum correction satisfies 0 ≤ 2∆Iw ≤ ∆Pw,
which means that ηQ decreases monotonically with increas-
ing ∆Iw. As a consequence, the bound Eq. (2) is in fact
more restrictive than the equivalent classical engine bound
with vanishing quantum fluctuations, namely ηQ ≤ ηcl :=
ηQ s.t. ∆Iw = 0. This demonstrates the detrimental in-
fluence of quantum friction for PDHEs close to equilibrium.
Indeed, to saturate Eq. (2) we require that, for all times

t ∈ [0, τ ], δḢλ(t) ∝ δẊλ(t). However, this necessarily im-

plies a vanishing quantum friction [ḢΛ(t), HΛ(t)] = 0 for
all t ∈ [0, τ ], which is a necessary and sufficient condition
for ∆Iw = 0. Hence, Eq. (2) is in fact a strict inequality
for heat engines in the presence of quantum friction. As
expected and discussed in Refs. [32, 33], the quantum cor-
rection becomes most relevant at low temperatures, which
we will later illustrate by an example.

The correction arising from |PW/Pw| affects engines ir-
respectively of quantum friction, and can lead to large devi-
ations from Eq. (1). First, we note that for time-symmetric
protocols, where PW = 0, we recover the original bound,
which is in agreement with [24]. Moving slightly away from
this point, one may find a regime where PW > 2Pw. In this
case, f(|PW/Pw|) > 1, and the bound Eq. (2) becomes
more restrictive than that of SSHEs Eq. (1). However, in
most operating regimes with non-vanishing power output
we expect f(|PW/Pw|)� 1, as PW −Pw = O(teq/τ)� 1
in the slow driving regime, see the expansion Eq. (9) (recall
that teq is the characteristic equilibration timescale). That
is, the power-efficiency of slowly driven PDHEs is less con-
strained by fluctuations than that of SSHEs. To quantify
this, one may expand Eq. (2) in ε ≡ teq/τ obtaining:

η ≤ ηC
(

1− ε 2Tca
2
P

PWa∆P

)
+O

(
ε2
)
, (16)

where we have defined aP ≡ limε→0(Pw − PW)/ε and
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FIG. 1. Here, we simulate the single ion engine, defined by the protocol in Eq. (18), with the parameters ω0 = 1, Th = 2,
and τ = 100, where we choose units of ~ = kB = 1. (a) Plot of the ratio between quantum and total power fluctuations,
2∆Iw/∆Pw, as a function of teq := 1/Γ and Tc. In the inset, we evaluate the correction term for the bound Eq. (2) due to the
ratio between the adiabatic and actual power. (b) Plot of the efficiency η and the bounds ηPS , Eq. (1), and ηQ, Eq. (2), as a
function of teq := 1/Γ, for Tc = 0.2. In the inset, we evaluate the power Pw, adiabatic power PW , and power fluctuations ∆Pw.

a∆P ≡ limε→0(∆Pw − 2∆Iw)/ε, which are finite and can
be inferred from Eqs. (9) and (11).

Since the bound can be saturated for δḢλ ∝ δẊλ, one
can in principle approach the Carnot efficiency, at finite
power and zero work fluctuations, in the limit where teq

becomes vanishingly small and τ remains finite (recall that
work fluctuations are proportional to ε from Eq. (11)). This
is in accordance with the results demonstrated in [20, 70].
Our bound Eq. (2) thus incorporates previous results and
furthermore gives the leading order correction to Carnot’s
bound for finite speed and equilibration time-scale, while
clarifying that PDHEs also obey TUR relations.

Single ion heat engine: To illustrate our bound Eq. (2) we
consider a model of a single ion PDHE, inspired by recent
experimental realisations using ion-traps [71]. We describe
the engine using a master equation for the damped harmonic
oscillator:

ρ̇t = −iω[a†ωaω, ρt] + Γ(Nβ + 1)Daω [ρt] + ΓDa†ω [ρt],

(17)

with DX [ρ] = XρX† − 1
2{X

†X, ρ}. Here the Hamiltonian

is Hω = ω(a†ωaω+ 1
2 ) with ω the time-dependent frequency,

aω =
√
ω/2(x + ip/ω) is the creation operator with unit

mass, Γ is the damping rate (in the slow driving regime,
teq/τ � 1 with teq ≡ Γ−1), and Nβ = 1/(eβω − 1) is the
Bose-Einstein distribution. We consider a cycle defined by
the slow modulation of the engine’s oscillator frequency and
bath temperature, λ : t 7→ λ(t) = {T (t), ω(t)}, according
to the periodic functions

ω(t) = ω0

(
1 +

1

2
sin

(
2πt

τ

)
+

1

4
sin

(
4πt

τ
+ π

))
,

T (t) =
TcTh

Th + (Tc − Th) sin2
(
πt
τ

) , (18)

where Tc < Th and ω0 > 0. Note that for the temperature,
we have simply assigned α(t) = sin2(πt/τ) in Eq. (3). This
protocol is cyclic, ω(0) = ω(τ) = ω0, T (0) = T (τ) = Tc,

and satisfies the slow-driving condition ω̇(t) = Ṫ (t) = 0

for t = 0, τ . In Appendix B we calculate the power and
its fluctuations, as well as the efficiency and its bounds,
using Eqs. (5), (9), and (11). Notably, the power opera-

tor Ḣω = ω̇
(
ω−1Hω + ((a†ω)2 + a2

ω)/2
)

does not commute

with the engine Hamiltonian, [Hω, Ḣω] 6= 0, meaning that
quantum friction is present throughout the cycle, and so
the quantum correction term Eq. (12) is strictly positive.
To see this effect, we plot the ratio between quantum and
total power fluctuations, i.e. 2∆Iw/∆Pw, in Fig. 1 (a). It
can be seen how the quantum fluctuations become more
relevant in the low temperature regime, ω0/Tc � 1, as ex-
pected. In this regime, the TUR Eq. (15) might become
substantially affected by quantum fluctuations. Moreover,
while the total power fluctuations ∆Pw vanish as teq/τ → 0
(see the inset of Fig. 1 (b)), the ratio of the quantum fluc-
tuations 2∆Iw/∆Pw can be seen to increase as teq/τ be-
comes smaller, showing that quantum fluctuations becomes
more relevant in the slow-driving limit. Conversely, the cor-
rection term f(|PW/Pw|) is large when teq/τ is large, and
vanishes in the limit teq/τ → 0. This means that, as can
be seen in Fig. 1 (b), in the limit teq/τ → 0 the engine
produces finite power Pw = PW , while both the efficiency
η, as well as the bound given in Eq. (2), approaches Carnot.
Finally, we see in Fig. 1 (b) that the bound in Eq. (1) does
not apply to PDHEs; while the efficiency η always obeys
Eq. (2), it can violate Eq. (1) for sufficiently small teq/τ ,
as this bound vanishes in the slow-driving limit, due to the
fact that ∆Pw becomes vanishingly small.

Conclusions: We have derived a bound on the opti-
mal efficiency of quantum periodically driven heat engines
(PDHEs) in terms of their average power and constancy,
valid in the slow-driving, Markovian regime. In the first
instance, we see that PDHEs are subject to a bound that
differs from steady-state heat engines (SSHEs) through an
additional dependence on the ratio between adiabatic and
actual power. Nonetheless, Eq. (2) still imposes a universal
constraint on engine efficiency for a given power and con-
stancy, thus providing a finite time correction to the Carnot
bound at leading order in driving speed. The bound fur-
ther incorporates the effect of quantum friction stemming
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from possibly non-commuting Hamiltonian driving. This
represents the first Thermodynamic Uncertainty Relation for
PDHEs that explicitly shows the role of quantum effects.

It has recently been shown that quantum friction reduces
the maximum power achievable in slow driving PDHEs [41,
44, 72, 73]. Our results demonstrate that in this operational
regime, quantum friction limits the efficiency relative to the
subsequent reliability and power. More specifically, when
optimising any one of the trio φ ∈ {η, Pw, 1/∆Pw} while
fixing the other two variables, quantum friction inevitably
leads to a reduction in the maximum value φmax that can
be attained. Given that enhancements with a quantum ori-
gin have been identified in other thermodynamic contexts,

such as Otto-like engines [74–76] or refrigerators [77], a full
understanding of the role of quantum effects in PDHEs be-
yond the slow-driving and weak-coupling regime remain as
open questions.
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[67] I. Frérot and T. Roscilde, Phys. Rev. B 94, 075121 (2016).
[68] T. Feldmann, B. Andresen, A. Qi, and P. Salamon, J.

Chem. Phys. 83, 5849 (1985).
[69] D. A. Sivak and G. E. Crooks, Phys. Rev. L 108, 190602

(2012) (2012).
[70] T. Denzler and E. Lutz, (2020), arXiv:2007.01034.
[71] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah,

E. Lutz, F. Schmidt-Kaler, and K. Singer, Science 352,
325 (2015).

[72] K. Brandner, M. Bauer, and U. Seifert, Phys. Rev. Lett.
119, 170602 (2017).

[73] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet, and
M. Scandi, Entropy 22, 1076 (2020).

[74] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044
(2015).

[75] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl,
K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley,
R. Uzdin, and E. Poem, Phys. Rev. Lett. 122, 110601
(2019).

[76] M. Lostaglio, Phys. Rev. Lett. 125, 230603 (2020).
[77] N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva,

and P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014).
[78] F. Fagnola and V. Umanita, Infin. Dimens. Anal. Quantum

Probab. Relat. Top. 10, 335 (2007).
[79] T. L. Boullion and P. L. Odell, Generalised inverse matrices

(Wiley-Interscience, New York, 1971).
[80] P. M. Riechers and J. P. Crutchfield, Chaos 28, 033115

(2018).
[81] D. Petz and F. Hiai, Introduction to Matrix Analysis and

Applications (Springer-Verlag, New Delhi, 2014).
[82] F. Fagnola and R. Quezada, Infin. Dimens. Anal. Quantum

Probab. Relat. Top. 08, 573 (2005).

A. Entropy production and work as a scalar product

Consider a system with a separable Hilbert space H, with B(H) ⊃ BS(H) denoting the algebra of bounded operators, and
real vector space of self-adjoint operators on H, respectively, and T (H) ⊆ B(H) the space of trace-class operators, i.e.,
the bounded operators for which the trace is well-defined, and finite. Note that for any A ∈ B(H) and B ∈ T (H), we
have AB,BA ∈ T (H), while T (H) = B(H) if H is finite-dimensional. The normal state space of H is thus defined as the
space of positive, unit-trace operators S(H) ⊂ T (H).

Let us define a parameter process by the function λ : [0, τ ] 3 t 7→ λ(t) := {T (t),Λ(t)}, where T (t) is the temperature
of the surrounding thermal bath, and Λ(t) is the mechanical parameter of the system Hamiltonian, HΛ(t). Denoting

the equilibrium state, for each λ(t), as πλ(t) := e−HΛ(t)/T (t)/Tr
(
e−HΛ(t)/T (t)

)
, we may define the “spectrum shift”

δ : Aλ(t) 7→ δAλ(t) := Aλ(t)−Tr
(
Aλ(t) πλ(t)

)
I, so that for any Aλ(t), Tr

(
δAλ(t)πλ(t)

)
= 0. Therefore, let us introduce the

space of self-adjoint operator valued functions with zero expectation value at equilibrium, δAλ : [0, τ ] → BS(H), defined
as the set

BS(H, λ) := {δAλ : [0, τ ] 3 t 7→ δAλ(t)}. (A1)

Note that by construction, δI = 0, i.e., the identity I is never in the range of any δAλ ∈ BS(H, λ). Moreover, we recall
that the quantities considered in the main text, in terms of which we established the thermodynamic uncertainty relation,
are of the form δẊλ(t), with Xλ(t) := (1/T (t))HΛ(t), and δḢλ(t). Clearly, δẊλ, δḢλ ∈ BS(H, λ).

Now let us turn to the setup described in the main text, where the system evolves according to a Lindbladian Lλ(t),

which in the Heisenberg picture is given by the dual L ∗λ(t), defined by the identity Tr
(
L ∗λ(t)(A)B

)
= Tr

(
ALλ(t)(B)

)
for
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all A ∈ B(H) and B ∈ T (H), taking the form

L ∗λ(t)(·) := HΛ(t)(·) +
∑
x

(
Lx(λ(t))†(·)Lx(λ(t))− 1

2
{Lx(λ(t))†Lx(λ(t)), (·)}

)
. (A2)

Here, we define the superoperator HΛ(t)(·) := i[HΛ(t), (·)] which describes the system’s Hamiltonian dynamics. We assume
that the equilibrium state πλ(t) is the unique fixed point of the Quantum Markov Semigorup generated by Lλ(t); a state

ρ ∈ S(H) is a fixed point of eθLλ(t) if and only if ρ is in the kernel of Lλ(t), i.e., Lλ(t)(ρ) = 0. In other words, we demand
that for any state ρ ∈ S(H), Lλ(t)(ρ) = 0 if and only if ρ = πλ(t).

Note that the fixed point πλ(t) is faithful ; a state ρ ∈ S(H) is faithful if for any A ∈ B(H), Tr
(
A†Aρ

)
= 0 ⇐⇒ A = 0.

If H is finite-dimensional, a faithful state can be considered as one that has full rank, i.e., a state with no zero-eigenvalues.

The faithfulness of a fixed point πλ(t) implies that, for any s ∈ [0, 1], we may define the s-dual of L ∗λ(t), denoted L̃
(s)
λ(t) ,

as the solution to

Tr
(
π1−s
λ(t)L̃

(s)
λ(t)(A)πsλ(t)B

)
= Tr

(
π1−s
λ(t)Aπ

s
λ(t)L

∗
λ(t)(B)

)
(A3)

for all A,B ∈ B(H). Recall from the main text that we only consider systems which obey the detailed balance condition.

L ∗λ(t) obeys the s-detailed balance condition if L̃
(s)
λ(t) = L ∗λ(t) − 2Hλ(t). However, as shown by Fagnola et al [78] L ∗λ(t)

obeys the 0-detailed balance condition if and only if L ∗λ(t) admits a privileged representation (Theorem 5.1), which in turn

implies that the s-dual will be uniquely defined as L̃
(s)
λ(t) = L̃λ(t) for all s (Propositions 7.1 and 8.1). As such, we shall

simplify the notation and state that L ∗λ(t) obeys detailed balance if

L̃λ(t) = L ∗λ(t) − 2Hλ(t). (A4)

Moreover, since we always assume that the stationary state πλ(t) is of Gibbs form, if L ∗λ(t) obeys detailed balance, then it

necessarily also obeys time-translation covariance (see more details in the accompanying article [60]), defined as

HΛ(t) ◦L ∗λ(t) = L ∗λ(t) ◦HΛ(t). (A5)

Now consider the symmetric bilinear forms
〈〈
·, ·
〉〉
λ

: BS(H, λ)×BS(H, λ)→ R and
〈〈
·, ·
〉〉′
λ

: BS(H, λ)×BS(H, λ)→ R,
defined as 〈〈

δAλ, δBλ
〉〉
λ

:=
1

2τ

∫ τ

0

dt

∫ ∞
0

dθ Tr
(
δAλ(t)(θ) Jλ(t)(δBλ(t)(0)) + δBλ(t)(θ) Jλ(t)(δAλ(t)(0))

)
,

〈〈
δAλ, δBλ

〉〉′
λ

:=
1

2τ

∫ τ

0

dt

∫ ∞
0

dθ Tr
(
δAλ(t)(θ) Sλ(t)(δBλ(t)(0)) + δBλ(t)(θ) Sλ(t)(δAλ(t)(0))

)
. (A6)

Here, we define δAλ(t)(θ) := eθL
∗
λ(t)(δAλ(t)) as the Heisenberg evolved operator δAλ(t), and we have introduced the

logarithmic matrix mean

Jλ(t)(·) :=

∫ 1

0

ds πsλ(t) (·)π1−s
λ(t) , (A7)

and the arithmetic matrix mean

Sλ(t)(·) :=
1

2
{(·), πλ(t)}. (A8)

We note that these matrix means satisfy the following properties:

Jλ(t)(A)† = Jλ(t)(A
†), Sλ(t)(A)† = Sλ(t)(A

†) ∀A ∈ B(H), (A9)

and

J∗λ(t) = Jλ(t), S∗λ(t) = Sλ(t). (A10)

In other words, these matrix means are *-homomorphisms (Eq. (A9)), and are self-dual (Eq. (A10)).
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Theorem 1. Consider a Quantum Markov Semigorup, generated by the Lindbladian L ∗λ(t) defined in Eq. (A2), which

satisfies the following properties: (i) there exists a faithful state πλ(t) such that Lλ(t)(πλ(t)) = 0; (ii) L ∗λ(t) satisfies

detailed balance and time-translation covariance; and (iii) for any ρ ∈ S(H), if Lλ(t)(ρ) = 0, then ρ = πλ(t). The bilinear
forms (A6) thus define a pair of inner products satisfying〈〈

δAλ, δAλ
〉〉′
λ
≥
〈〈
δAλ, δAλ

〉〉
λ
≥ 0 (A11)

for all Aλ ∈ BS(H, λ).

Proof. To simplify notation, we will drop δ, and all subscripts related to λ and t, i.e, δAλ = A, δAλ(t) = A, HΛ(t) = H,
πλ(t) = π, Jλ(t) = J, Sλ(t) = S etc. We begin by introducing the inner product 〈·, ·〉 : BS(H)× BS(H)→ R, defined as

〈A,B〉 := Tr (AJ(B)) , J(·) :=

∫ 1

0

ds πs(·)π1−s. (A12)

Note that Eq. (A9) and cyclicity of the trace ensures that 〈A,B〉 = 〈A,B〉∗. Moreover, given that B is a bounded operator,
while π is trace-class, it follows that J(B) is also trace-class; this implies that |〈A,B〉| <∞. To show that 〈·, ·〉 is an inner
product, we note that it satisfies the following properties: (i) linearity in the first argument, 〈αA+B,C〉 = α〈A,C〉+〈B,C〉
where α ∈ R; (ii) symmetry, 〈A,B〉 = 〈B,A〉; and (iii) positive definiteness 〈A,A〉 ≥ 0. Property (i) is trivial. To show
property (ii), we use cyclicity of the trace and Eq. (A10) to show that

〈A,B〉 = Tr (AJ(B)) = Tr (J(A)B) = 〈B,A〉. (A13)

Finally, to show property (iii), note that for any s ∈ [0, 1], Tr
(
AπsAπ1−s) = Tr

(
M†M

)
> 0, where M = πs/2Aπ(1−s)/2.

Now observe that the nested commutator Cm, defined as C0(A) = A for all A ∈ B(H) and Cm+1(·) = [H, Cm(·)], where
H ∈ BS(H) is the Hamiltonian, satisfies

Tr (A Cm(B)) = (−1)mTr (Cm(A) B) (A14)

for all A,B ∈ BS(H) and m ∈ Z (assuming that at least one of A,B is also trace-class). Furthermore, using [π,H] = 0 it
is straightforward to verify the commutation relations

J ◦ Cm = Cm ◦ J, ∀m ∈ Z. (A15)

We thus find for any A,B ∈ BS(H) the following:

〈A, Cm(B)〉 = Tr (A J ◦ Cm(B)) ,

= Tr (J(A)Cm(B)) ,

= (−1)mTr (Cm ◦ J(A) B) ,

= (−1)mTr (J ◦ Cm(A) B) ,

= (−1)m〈B, Cm(A)〉. (A16)

Here: we use Eq. (A10) in the second line; in the third line, we use Eq. (A9) which implies that for all A ∈ BS(H), the
trace-class operator J(A) is also self-adjoint, justifying the use of Eq. (A14); and we use Eq. (A15) in the fourth line.

Given the assumption that L has a faithful state in its kernel, i.e., π, we may use the definition of the s-dual in Eq. (A3).
Moreover, given the assumption that L ∗ obeys detailed balance Eq. (A4) and time-translation covariance Eq. (A5), we
may thus write

〈A(θ), B〉 =

∫ 1

0

ds Tr
(
A(θ)πsBπ1−s) ,

=

∫ 1

0

ds Tr
(
eθL

∗
(A)πsBπ1−s

)
,

=

∫ 1

0

ds Tr
(
e
θ
2 L ∗(A)πse

θ
2 L̃ (B)π1−s

)
,

=

∫ 1

0

ds Tr
(
e
θ
2 L ∗(A)πse

θ
2 (L ∗−2H )(B)π1−s

)
,

=

∫ 1

0

ds Tr
(
A(θ/2)πse−θH (B(θ/2))π1−s) ,

= 〈A(θ/2), e−θH (B(θ/2))〉 =

∞∑
m=0

(−iθ)m

m!
〈A(θ/2), Cm(B(θ/2))〉, (A17)
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where we use the exponential series e−θH =
∑∞
m=0

(−iθ)m
m! Cm. Consequently, by Eq. (A6) we have

〈〈
A,B

〉〉
:=

1

2τ

∫ τ

0

dt

∫ ∞
0

dθ

(
〈A(θ), B(0)〉+ 〈B(θ), A(0)〉

)
,

=
1

2τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
m=0

(−iθ)m

m!
(1 + (−1)m)〈A(θ/2), Cm(B(θ/2))〉,

=
1

τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
n=0

(iθ)2n

(2n)!
〈A(θ/2), C2n(B(θ/2))〉,

=
1

τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
n=0

(iθ)2n

(2n)!
Tr (A(θ/2) J ◦ C2n(B(θ/2))) ,

=
1

τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
n=0

(iθ)2n

(2n)!
Tr (A(θ/2) Cn ◦ J ◦ Cn(B(θ/2))) ,

=
1

τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
n=0

(−1)n(iθ)2n

(2n)!
〈Cn(A(θ/2)), Cn(B(θ/2))〉,

=
1

τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
n=0

θ2n

(2n)!
〈Cn(A(θ/2)), Cn(B(θ/2))〉, (A18)

where we used (A16) in the second and penultimate line. Since this equation is a positive weighted integral of the inner
product 〈·, ·〉 : BS(H)× BS(H)→ R, this guarantees that the bilinear form

〈〈
·, ·
〉〉

: BS(H, λ)× BS(H, λ)→ R is also an

inner product, i.e., it satisfies the properties: (i) linearity in the first argument
〈〈
αA+ B,C

〉〉
= α

〈〈
A,C

〉〉
+
〈〈
B,C

〉〉
,

where α ∈ R; (ii) symmetry
〈〈
A,B

〉〉
=
〈〈
B,A

〉〉
; and (iii) positive definiteness

〈〈
A,A

〉〉
≥ 0.

We can apply the exact same arguments for the alternative inner product 〈·, ·〉′ : BS(H)× BS(H)→ R, defined as

〈A,B〉′ := Tr (AS(B)) , S(·) :=
1

2
{(·), π}, (A19)

in which case we find

〈〈
A,B

〉〉′
:=

1

2τ

∫ τ

0

dt

∫ ∞
0

dθ

(
〈A(θ), B(0)〉′ + 〈B(θ), A(0)〉′

)
=

1

τ

∫ τ

0

dt

∫ ∞
0

dθ

∞∑
n=0

θ2n

(2n)!
〈Cn(A(θ/2)), Cn(B(θ/2))〉′.

(A20)

An important remark is worth being made regarding the convergence of the inner products
〈〈
·, ·
〉〉

and
〈〈
·, ·
〉〉′

. We note
that thus far, we have only used the fact that L has a faithful state π in its kernel, and that L ∗ obeys detailed balance
and time-translation covariance. The final assumption in the theorem was that π is the unique state in the kernel of L ,
which is precisely what ensures that the inner products is bounded, and hence meaningful. To show this, let us define the
following superoperator:

L +(·) := −
∫ ∞

0

dθ eθL ((·)− πTr (·)) . (A21)

It can be shown that Eq. (A21), also known as Drazin inverse of L , satisfies the following properties [43, 60, 79]:

(i) Tr (L +(X)) = 0 for all X ∈ T (H).

(ii) L L +(X) = L +L (X) = X − Tr (X)π for all X ∈ T (H).

(iii) L +(π) = 0.

The Drazin inverse corresponds to the minus-1 power of the Lindblad generator. For the sake of simplicity, let us assume
that L is “fully diagonalizable”, i.e. L = SΩS−1, with the columns (rows) of the invertible matrix S (S−1) the right (left)
eigenvectors, and Ω the diagonal matrix of complex eigenvalues, which (without loss of generality and upon reshuffling)
we can take to be ordered such that Ω0 = 0 and |Ωk| < |Ωk+1|, with 0 < |Ωk| < ∞ ∀ k > 0. The fact that L has
a unique state π in its kernel is reflected by the existence of only one eigenvalue Ωk such that |Ωk| = 0, namely, Ω0.

The spectral decomposition of the Drazin inverse can be shown to be simply given by L + = SΩ̃S−1, where Ω̃k = Ω−1
k ,
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i.e. it corresponds to the inverse spectrum of the Lindbladian excluding the zero eigenvalue. In other words, Ω0 = 0
continues to be in the spectrum Ω̃, so that π continues to be in the kernel of L +, see property (iii) above. Since for all

k > 0, |Ωk+1| > |Ωk| > 0, then |Ω̃k+1| < |Ω̃k| < ∞; the Drazin inverse will have a bounded spectrum. Consequently,
for any operator X ∈ T (H), then L +(X) ∈ T (H). Indeed, this condition is implicit in properties (i) and (ii). Notably,
the boundedness of the Drazin inverse can be shown also when the Linblad generator is only “Jordan-diagonalizable” by
exploiting the closed analytical expression of its spectrum (see Appendices A to G of [80]).

In order to see how this allows us to achieve the goal of determining the convergence of the bilinear form Eq. (A18), the
last step is to evaluate the following:∫ ∞

0

dθ 〈A(θ), B〉 =

∫ ∞
0

dθTr (A(θ)J(B)) =

∫ ∞
0

dθTr
(
eθL

∗
(A) J(B)

)
,

=

∫ ∞
0

dθTr
(
A eθL (J(B))

)
,

= −Tr
(
A L + (J(B))

)
+

∫ ∞
0

dθTr
(
AeθL (π)

)
Tr (J(B)) ,

= −Tr
(
A L + (J(B))

)
, (A22)

where we used the definition of the dual in the second line (see above Eq. (A2)), the definition of the Drazin inverse Eq. (A21)
with the argument being the trace-class operator J(B) in the third line, and finally where Tr (J(B)) = Tr (πB) = 0 is
used in the fourth line (this stems directly from the fact that we consider only self-adjoint operator valued functions with
a zero expectation value at equilibrium, see Eq. (A1)). Due to the arguments made above, since A,B ∈ BS(H), and
L + (J(B)) ∈ T (H), therefore AL +(J(B)) ∈ T (H), and hence the trace in the final line of Eq. (A22) is a finite quantity.
Since the bilinear form Eq. (A18) consists of a finite integral, over the total driving time τ , of two terms such as Eq. (A22), it
therefore converges to a finite quantity. The exact same arguments can also be used to show the boundedness of Eq. (A20).

Finally, we note that the Kubo-Ando inequality implies that the arithmetic matrix mean is maximal amongst the family
of means [81]. In particular, one has 〈A,A〉′ ≥ 〈A,A〉. Comparing (A18) and (A20) then implies the inequalities〈〈

A,A
〉〉′ ≥ 〈〈A,A〉〉 ≥ 0. (A23)

As stated in the main text, the average entropy production, as well as the average power and its fluctuations, can be
expressed in terms of the inner product

〈〈
·, ·
〉〉
λ

. In particular, the fluctuating power is

∆Pw = 2
(

∆Iw +
〈〈
δḢλ, δḢλ

〉〉
λ

)
≡ 2
〈〈
δḢλ, δḢλ

〉〉′
λ
, (A24)

where the quantum correction term obeys the identity

∆Iw :=
1

τ

∫ τ

0

dt

∫ ∞
0

dθ Iλ(t)(ḢΛ(t)(θ), ḢΛ(t)(0)) ≡
〈〈
δḢλ, δḢλ

〉〉′
λ
−
〈〈
δḢλ, δḢλ

〉〉
λ
. (A25)

As a consequence of Theorem 1, the quantum correction term ∆Iw is non-negative, and obeys the inequality

∆Pw ≥ 2∆Iw ≥ 0. (A26)

B. Example: a single ion heat engine

We shall now turn to the example of a single ion heat engine, which can be modelled as a harmonic oscillator. To be
sure, the observables of interest for a harmonic oscillator, such as the Hamiltonian, are unbounded, whereas our results thus
far have been framed in terms of bounded operators. Notwithstanding, the model we consider admits a Master equation
obeying detail balanced, and thus falls within the domain of applicability of our main results [82]. The Hamiltonian of the
harmonic oscillator, with frequency ω, takes the form

Hω = ω

(
a†ωaω +

1

2

)
,

x2 =
1

2ω
((a†ω)2 + a2

ω + 2a†ωaω + 1),

p2 =
ω

2

(
−(a†ω)2 − a2

ω + 2a†ωaω + 1
)
. (B1)
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For a fixed λ = (T, ω), the Lindblad superoperator governing the evolution of the harmonic oscillator, in the Heisenberg
picture, is given as

L ∗λ (·) = iω[a†ωaω, (·)] + Γ(Nβ + 1)D̃aω [(·)] + ΓD̃a†ω [(·)], (B2)

with

D̃X [ρ] = X†ρX − 1

2
{X†X, ρ}. (B3)

We wish to compute:

〈σ̇〉 =
〈〈
δẊλ, δẊλ

〉〉
λ
,

Pw = PW −
〈〈
δḢλ, δẊλ

〉〉
λ
,

∆Pw = 2
〈〈
δḢλ, δḢλ

〉〉′
λ
,

∆Iw =
〈〈
δḢλ, δḢλ

〉〉′
λ
−
〈〈
δḢλ, δḢλ

〉〉
λ
. (B4)

A lengthy calculation yields (see more details in the accompanying article [60]):

Pw = PW −
1

τ

∫ τ

0

dt
ω̇eβω

(
ω
(
Γ2 + 4ω2

)
(β̇ω + βω̇) + Γ2ω̇ sinh(βω)

)
Γω (eβω − 1)

2
(Γ2 + 4ω2)

,

∆Pw =
1

τ

∫ τ

0

dt
2ω̇2eβω

(
Γ2 + 4ω2 + Γ2 cosh(βω)

)
(eβω − 1)

2
(Γ3 + 4Γω2)

,

〈σ̇〉 =
1

τ

∫ τ

0

dt
eβω

(
βΓ2ω̇2 sinh(βω) + ω

(
Γ2 + 4ω2

)
(β̇ω + βω̇)2

)
Γω (eβω − 1)

2
(Γ2 + 4ω2)

. (B5)

Noting that Tr
(
Ḣωπλ

)
= ω̇∂ωFλ, while Fλ = −β−1ln

(
eβω

eβω−1

)
, the adiabatic power is given by:

PW = −1

τ

∫ τ

0

dtTr
(
Ḣωπλ

)
= −1

τ

∫ τ

0

dt ω̇ ∂ωFλ = −1

τ

∫ τ

0

dt
ω̇

eβω − 1
. (B6)

Therefore, we may compute the efficiency using the above expressions as

η =
ηCPw

Tc 〈σ̇〉+ Pw
. (B7)

To obtain the efficiency bound ηQ, we must now compute the quantum correction

∆Iw =
1

τ

∫ τ

0

dt

∫ ∞
0

dθ Tr
(
δḢλ(θ)

(
Sλ − Jλ

)
(δḢλ(0))

)
, (B8)

which reduces to

∆Iw =
1

τ

∫ τ

0

dt
ω̇2Γ(e2βω − 1) (βω coth(βω)− 1)

2βω(eβω − 1)2(Γ2 + 4ω2)
> 0, (B9)

with positivity guaranteed by the positivity of the integrand for all t.
Finally, to ensure a protocol that is both cyclic, λ(t) = λ(τ), and satisfies the slow-driving condition λ̇(0) = λ̇(τ) = {0, 0},

we shall use the following parameter protocol, given in the main text:

ω(t) = ω0

(
1 +

1

2
sin

(
2πt

τ

)
+

1

4
sin

(
4πt

τ
+ π

))
,

T (t) =
TcTh

Th + (Tc − Th) sin2
(
πt
τ

) . (B10)

Note that substituting these functions into the above integrals cannot be computed analytically, so we proceed by numerical
integration. The results are presented in the figures given in the main text.


