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When engineering microscopic machines, increasing efficiency can often come at a price of reduced
reliability due to the impact of stochastic fluctuations. Here we develop a general method for performing
multiobjective optimization of efficiency and work fluctuations in thermal machines operating close to
equilibrium in either the classical or quantum regime. Our method utilizes techniques from thermodynamic
geometry, whereby we match optimal solutions to protocols parametrized by their thermodynamic length.
We characterize the optimal protocols for continuous-variable Gaussian machines, which form a crucial
class in the study of thermodynamics for microscopic systems.
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Designing optimal protocols for heat-to-work conversion
below the nanoscale remains an ongoing challenge in the
fields of stochastic and quantum thermodynamics [1–3]. For
microscopic machines, efficiency and power alone are not the
only figures of merit due to the additional influence of
stochastic fluctuations. While a machine may extract work
efficiently on average, it may be subject to largework fluctua-
tions which hampers any reliability. Considerable effort is
now being devoted to study this interplay between efficiency,
power, and reliability in small scale systems [4–13].
Dissipation can be minimized for general far-from-

equilibrium processes using methods from optimal control
theory [14–19]. However finding solutions with such
approaches is often limited to simple systems with few
degrees of freedom, which makes it difficult to identify
general design principles for efficient thermal machines
beyond specific models. On the other hand, a general
method for optimizing the efficiencies of machines operating
close to equilibrium was recently proposed by Brandner and
Saito [20]. This method, applicable to both classical and
quantum periodic heat engines, relies on expressing the
engine’s entropy production in terms of a metric over the
Riemann manifold of equilibrium states of the working
system. One can maximize the efficiency for any given
protocol by reparametrizing it in terms of the so-called
thermodynamic length [21–31], which provides a measure of
distance between configurations in the equilibriummanifold.

The benefit of this approach is its simplicity; optimization is
achieved by a straightforward computation of the thermo-
dynamic metric tensor which depends only on the equilib-
rium and relaxation properties of the machine [20].
While thermodynamic length provides a systematic way

of determining efficient protocols, it remains to be seen how
increasing efficiency impacts the work fluctuations. For
systems connected to a single fixed-temperature reservoir,
initial investigations have explored the simultaneous opti-
mization of the average dissipated work required to drive a
system from one state to another and the associated minimal
work fluctuations [9,32]. As this is a multi-objective
optimization problem, one must consider the boundary of
allowed protocols where dissipation cannot be reduced any
further without suffering an increase in fluctuations, or vice
versa. This boundary, known as a Pareto front [33], only
converges to a single point in regimes where the fluctuation-
dissipation relation holds true [34–36], in which case there
exists a unique protocol with minimal average dissipated
work and work variance. At present, Pareto optimization has
not been analyzed in the context of periodic heat engines
operating between different temperatures. In this situation at
least two figures of merit are thermodynamic efficiency
versus the resulting work fluctuations, whose optimal pro-
tocols are not expected to coincide for both classical and
quantum systems. This is due to the fact that efficiency and
work fluctuations are typically not monotonically related to
each other, which can prohibit the existence of a unique
optimal protocol.
In this Letter, we outline a general method for finding

Pareto-optimal protocols interpolating between maximum
efficiency and minimal work fluctuations for engines oper-
ating close to equilibrium. Remarkably, we show that such
protocols can be found by constructing a new form of
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thermodynamic metric tensor and corresponding length. By
parameterizing any given protocol in terms of this general-
ized thermodynamic length, one may identify regimes
of optimal efficiency and reliability in a straightforward
manner. We illustrate our approach for quantum heat engines
operating along discrete step-equilibration cycles [37–40],
though our results also apply to classical heat engines and
open quantum systems undergoing Lindblad dynamics. As a
core application, we derive analytic expressions for thermo-
dynamic length in general continuous variable Gaussian
quantum systems [41]. Such systems form a major platform
for studying thermodynamic processes in the microscopic
regime, and our approach can be used to optimize any
Gaussian thermal machine by using the natural tools in the
Gaussian formalism that operate on the steady-state covari-
ance matrix. As an example, we determine Pareto fronts of
optimal efficiency and reliability for a system of coupled
harmonic oscillators driven by periodic changes in temper-
ature, frequency, and coupling strength.
Let us begin by considering a quantum system weakly

coupled to a thermal environment at inverse temperature
β ¼ 1=kBT. The system is subject to external control via a
set of d mechanical parameters λ⃗ ≔ ðλ1; λ2;…λdÞ and we
denote its Hamiltonian by Hðλ⃗Þ. In addition, we allow for
external modulation of the environmental temperature.
Collectively these sets of variables define a cycle via a
closed curve γ∶t ↦ Λ⃗t in the parameter space containing
the vectors

Λ⃗ ≔ fβ; λ⃗g ∈ Rdþ1; ð1Þ

and we label Λ0 ¼ β and Λj ¼ λj for j ≥ 1. The parameter
space defines a manifold of equilibrium states, defined by
πðΛ⃗Þ ≔ exp ½−βHðλ⃗Þ�=Trfexp ½−βHðλ⃗Þ�g. Furthermore,
we will introduce the following conjugate forces:

XjðΛ⃗Þ ≔
(
β−1Hðλ⃗Þ; if j ¼ 0;
∂

∂Λj Hðλ⃗Þ; if j ≥ 1.
ð2Þ

During the cycle the inverse temperature undergoes
a variation between a maximum and minimum,
βh ≤ βðtÞ ≤ βc, which we will express in the form βðtÞ ≔
βc þ ðβh − βcÞδβðtÞ with δβðtÞ ∈ ½0; 1� a dimensionless
periodic function. For convenience we take t ∈ ½0; 1� to
be a dimensionless parameter, and denote a discretized
set of N points along the curve evaluated at times tn ¼
ðn − 1Þ=ðN − 1Þ for n ∈ ½1; N�. We have in mind thermo-
dynamic cycles, where each step can be approximated by a
fast quench in the mechanical parameters λ⃗tn → λ⃗tnþ1

,
followed by relaxation to a new temperature βtn → βtnþ1

.
This means that at the beginning of each nth step the system
is in a thermal state πðΛ⃗tnÞ, which is left unchanged during
the quench step while work is performed. The state after the
quench then relaxes to a new equilibrium state πðΛ⃗tnþ1

Þ
with no work done during this step.

A central quantity of interest is the average irreversible
entropy production along the cycle γ, which can be
expressed as

Sirr ≔ βcW þ ðβc − βhÞQin ¼
XN−1

n¼1

S½πðΛ⃗tnÞjjπðΛ⃗tnþ1
Þ�; ð3Þ

where S½ρjjρ0� ¼ Tr½ρ lnðρÞ� − Tr½ρ lnðρ0Þ� ≥ 0 the quan-
tum relative entropy, and we identify the work done,

W ≔
XN−1

n¼1

Trf½Hðλ⃗tnþ1
Þ −Hðλ⃗tnÞ�πðΛ⃗tnÞg; ð4Þ

and supplied heat

Qin ≔
XN−1

n¼1

δβðtnþ1ÞTrfHðλ⃗tnÞ½πðΛ⃗tnþ1
Þ − πðΛ⃗tn �g: ð5Þ

The second equality in Eq. (3) follows from using the
periodicity Λ⃗t1 ¼ Λ⃗tN [42]. This formula motivates a
definition of efficiency for processes with a positive work
output, W ≤ 0, given by the ratio [51,52]

η ≔ −
W
Qin

≤ ηC; ð6Þ

where ηC ¼ 1 − βh=βc denotes the Carnot efficiency. Here
we see consistency with Carnot’s theorem, which follows
as a consequence of the second law Sirr ≥ 0.
In addition to efficiency, we will also be concerned with

the amount of work fluctuations generated along the cycle.
For quantum systems, stochastic work is determined from
projective measurements of the system energy at the
beginning and end of each unitary step [53]. By summing
up the changes in energy across each step and computing
the variance from the resulting work probability distribu-
tion, one can show [32,40]

VarðWÞ ≔
XN−1

n¼1

Trf½Hðλ⃗tnþ1
Þ −Hðλ⃗tnÞ�2πðΛ⃗tnÞg

− Trf½Hðλ⃗tnþ1
Þ −Hðλ⃗tnÞ�πðΛ⃗tnÞg2: ð7Þ

At this stage, we restrict our attention to cycles composed
of a large number of steps N2 ≫ 1, which defines a regime
that is close to quasistatic [37]. In this case we may replace
the summation with an integral over the continuous path γ
and obtain

VarðWÞ ≃ 1

N

Z
γ
dtmjkðΛ⃗tÞ

dλj

dt
dλk

dt
; ð8Þ

where summation is carried out over repeated indices,
restricted to the mechanical variables only. Here mjk is a
positive semidefinite and symmetric tensor

mjkðΛ⃗Þ≔
1

2
Tr½πðΛ⃗ÞfδXjðΛ⃗Þ;δXkðΛ⃗Þgþ�; if j; k ≥ 1 ð9Þ
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and we set mj0 ¼ m0j ¼ 0∀ j for later convenience. We
also denote the shifted operators δXjðΛ⃗Þ ¼ XjðΛ⃗Þ −
Tr½XjðΛ⃗ÞπðΛ⃗Þ� and f; gþ represents the anticommutator.
Turning to the efficiency, we consider the fraction
of the efficiency below the Carnot value, defined as
δη ≔ 1 − ðη=ηCÞ. Assuming a large number of steps and
applying a Taylor expansion in 1=N to Eq. (3) gives

δη ≃ −
1

2NβcW

Z
γ
dt gjkðΛ⃗tÞ

dΛj

dt
dΛk

dt
; ð10Þ

where we now have a different metric tensor:

gjkðΛ⃗Þ ≔ β

Z
β

0

dxTrfπðΛ⃗ÞδXjðλ⃗ÞU ix;λ⃗½δXkðΛ⃗Þ�g; ð11Þ

and we have introduced the unitary channel Uν;λ⃗½:� ¼
eiνHðλ⃗Þ½:�e−iνHðλ⃗Þ. We have further defined the adiabatic
work done [20]:

W ≔
I
γ
Tr½XjðΛ⃗ÞπðΛ⃗Þ�dλj; ð12Þ

which is a geometric quantity independent of the para-
metrization and assumed negativeW ≤ 0 to ensure a useful
work extraction cycle. We provide a proof of Eqs. (9) and
(11) in Sec. B of the Supplemental Material [42]. The
tensor (11) is proportional to the Kubo-Mori Fisher
information metric [54,55], which is a quantum analog
of the classical Fisher-Rao metric. At this stage we observe
that the elements of this tensor typically differ frommjk due
to possible noncommutativity between the conjugate
forces, i.e., if ½Xj; Xk� ≠ 0. In Sec. A of Ref. [42] we
highlight the different information-geometric inter-
pretations of these two metrics.
To establish our optimization problem, let us introduce

the dimensionless multiobjective function

Iϵ ≔ ϵVarðW̃Þ þ ð1 − ϵÞδη; ϵ ∈ ½0; 1�; ð13Þ

where for convenience we have defined the work
fluctuations in units of the cold temperature, VarðW̃Þ ¼
β2cVarðWÞ. The question we now address is how long
should the system spend at each point along the protocol γ
in order to maximize efficiency while minimizing fluc-
tuations? This amounts to finding the best choice of
parametrization γ∶t → Λ⃗t

0 ¼ Λ⃗ϕϵ
t

with function ϕϵ
t ∈

½0; 1� to be determined so as to minimize the scalarized
objective (13). Optimal parametrizations I�

ϵ ≤ Iϵ lie
along sections of the Pareto fronts [33]; these points form
the boundary of protocols where it is not possible to
increase efficiency (i.e., reduce δη) without increasing
work fluctuations, or conversely, reduce fluctuations
without reducing efficiency. By combining Eqs. (8) with
(10) and applying the Cauchy-Schwarz inequality we

arrive at a geometric expression for the minimized
objective function:

I�
ϵ ¼

L2
ϵ

N
; where Lϵ ¼

I
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MjkðΛ⃗ÞdΛjdΛk

q
; ð14Þ

and we define

Mϵ
jkðΛ⃗Þ ≔ ϵβ2cmjkðΛ⃗Þ þ

ð1 − ϵÞ
2βcjWj gjkðΛ⃗Þ: ð15Þ

This follows from the fact that Mϵ
jkðΛ⃗Þ gives another metric

tensor, since it is formed by a positive-weighted linear
combination of two metric tensors for ϵ ∈ ½0; 1�. The
function Lϵ may be interpreted as a generalized form of
thermodynamic length [27], whose dependence on ϵ encodes
information about the Pareto optimal solution. In the
classical regime where we may describe the thermal system
by a probability distribution pðΛ⃗Þ, we may determine the
equivalent tensor from the Fisher-Rao metric FjkðΛ⃗Þ ¼
h∂Λj

lnpðΛ⃗Þ∂Λk
lnpðΛ⃗Þi (see Sec. A of Supplemental

Material [42]). In this case, Eq. (15) takes the form

Mϵ
jkðΛ⃗Þ ¼

�
ϵ

�
T
Tc

�
2

μjk þ
ð1 − ϵÞ
2βcjWj

�
FjkðΛ⃗Þ; ð16Þ

with μj0 ¼ μ0k ¼ 0∀ j; k and μjk ¼ 1∀ j; k > 0.
Crucially, these Pareto optimal solutions are determined

by parameterizing the protocol γ in terms of the modified
thermodynamic length via the speed function t → ϕϵ

t [56],
which is obtained from the implicit equation

t ¼ 1

Lϵ

Z
ϕϵ
t

0

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mϵ

jkðΛ⃗sÞ
dΛj

ds
dΛk

ds

r
: ð17Þ

This means that for any given protocol, optimization
is achieved by changing the speed at which the
curve is traversed by choosing a new parametrization
γ∶t ↦ Λ⃗t

0 ¼ Λ⃗ϕϵ
t
. As long as the solution satisfies

ðj _ϕtj=NÞ2 ≪ 1 at all times, the system remains sufficiently
close to equilibrium and the optimal protocols may be
realized. There are two limiting cases of the geometric
bound. For ϵ ¼ 1we obtain a geometric lower bound on the
achievable work fluctuations:

VarðWÞ ≥ ðkBTcÞ2
N

L2
1: ð18Þ

For ϵ ¼ 0, we obtain a maximum upper bound on effi-
ciency η ≤ ηCð1 − L2

0=NÞ. An analogous efficiency bound
was previously obtained in Ref. [20] for continuous
Lindblad dynamics.
The above construction gives a general recipe for finding

Pareto optimal protocols for arbitrary quantum or classical
systems, valid in regimes where the number of steps
between equilibrium states is large. A particular class of
systems that are frequently used to describe many relevant
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physical systems in thermodynamics, such as ion trap heat
engines [57], are composed of Gaussian quantum states
[41,58]. The Hamiltonian of a D-mode Gaussian system is
quadratic in quadrature operators, namely,

Hðλ⃗Þ ¼ 1

2
RTGλ⃗R; ð19Þ

with R ¼ ðx1; p1;…; xD; pDÞT being the quadrature vector.
Here, theD ×D dimensional symmetricmatrix Gλ⃗ contains
all the quadratic couplings. For this general class we
provide an analytic formula for the Pareto optimal sol-
utions, which are given by Eq. (17) via computing the
metric tensor (15). By defining Xj ≔ ∂Λj

Gλ⃗ if j ≥ 1 and
X0 ≔ β−1Gλ⃗ we can express the metric (15) as follows (see
Sec. D of the Supplemental Material [42]):

Mϵ
jkðΛ⃗Þ ¼ ajk

ϵβ2c
4

ftrðXjXkÞ þ trðXkXjÞg

þ ð1 − ϵÞβ
4βcjWj trðX̄jXkÞ; ð20Þ

where aj0 ¼ a0j ¼ 0∀ j and ajk ¼ 1∀ j; k > 0, and we
define

X̄j ¼
Z

β

0

dx½eixΩGλ⃗ �TXj½eixΩGλ⃗ �; ð21Þ

Xj ¼
�
σðΛ⃗Þ − 1

2
Ω
�
Xj

�
σðΛ⃗Þ þ 1

2
Ω
�
; ð22Þ

with Ω being the symplectic form with Ωnm ¼ i½Rn; Rm�,
and σðΛ⃗Þ representing the steady state covariance
matrix with elements ½σðΛ⃗Þ�nm ¼ Tr½πðΛ⃗ÞfRn; Rmgþ�=
2 − Tr½πðΛ⃗ÞRn�Tr½πðΛ⃗ÞRm�. Furthermore, the adiabatic

work is found using W ¼ 1=2
H
γ dλ

jtr½XjσðΛ⃗Þ�. Notice
that the “tr” operation acts as a trace on the matrix space
associated to the Gaussian covariance matrices, which
should be distinguished from the trace “Tr” which acts
on the Hilbert space for density operators.
We have now derived the general form for the thermo-

dynamic metric tensor for Gaussian heat engines. So long
as one can compute this metric tensor, the speed function ϕϵ

t
can be approximately determined from Eq. (17) via
pointwise inversion followed by numerical interpolation.
We illustrate our method for the example of a pair of
coupled harmonic oscillators with R ¼ ½x1p1x2p2�T and
Hamiltonian coefficient matrix

Gλ⃗ ¼

2
66664
ω2 þ κ 0 −κ 0

0 1 0 0

−κ 0 ω2 þ κ 0

0 0 0 1

3
77775; ð23Þ

were we chose equal frequencies ω1 ¼ ω2 ¼ ω and denote
κ the coupling strength between the oscillators. As for
the driving protocol, we consider control over the bath
temperature alongside the joint frequency and coupling,
i.e., γ∶t↦Λ⃗t¼fβðtÞ;ωðtÞ;κðtÞg. The matrices Xω ¼ ∂ωGλ⃗,
Xκ ¼ ∂κGλ⃗, and X0 ¼ β−1Gλ⃗ are easily found from
Eq. (23). By substituting in Eqs. (21) and (22) one finds
the corresponding X̄j and Xj. Finally, by plugging these
into Eq. (20) we find the metric [59]. We choose a
harmonic protocol path βðtÞ ¼ βc þ ðβh − βcÞ sin2ðπtÞ,
ωðtÞ ¼ ω0½1 þ sin2ðπt þ π=4Þ�, and κðtÞ ¼ κ0½1þ
sin2ðπt þ π=4Þ�, with the parameters κ0, ω0, βc, and βh
being fixed during the cycle. In Fig. 1 we compare the work

0 0.5 1
0

5

10

FIG. 1. Left—Derivative of the optimal speed ϕϵ
t (17), corresponding to work fluctuations optimization at ϵ ¼ 1 (the blue curve) and

efficiency optimization with ϵ ¼ 0 (the red curve). The parameters are set to ω0 ¼ 1, Tc ¼ 0.25ω0, Th ¼ Tc þ ΔT with ΔT ¼ ω0,
κ ¼ 0.4ω0. Right—Work fluctuations vs oscillator frequency ω0, for the linear protocol (red) and the optimal protocol (blue). We
denote ΔW ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðWÞp
as the standard deviation and ΔW� ¼ kBTcL1=

ffiffiffiffi
N

p
the optimal fluctuations given by Eq. (18). Both quantities

are plotted relative to the adiabatic work extracted jWj, which is independent of parametrization. The gray area is not accessible through
any protocol. Here we set the parameters to N ¼ 50, Tc ¼ 0.25, Th ¼ Tc þ ΔT with ΔT ¼ 4Tc, and κ ¼ 0.4Tc.
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fluctuations ΔW ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðWÞp

for a linear para-
metrization as a function of the optimal amount ΔW� ¼
kBTcL1=

ffiffiffiffi
N

p
given by Eq. (18), both as a function of

oscillator frequency ω0 and expressed in units of the
adiabatic work. We also plot the rate of change in the
speed function ϕϵ

t versus time for ϵ ¼ 1, giving minimal
fluctuations, compared with ϵ ¼ 0 that gives maximum
efficiency. One can clearly see that distinct protocols must
be chosen in order to achieve either optimal efficiency or
fluctuations. In Fig. 2 we plot the Pareto fronts for the
model for different choices of cold temperature Tc and
coupling constant κ. The points on each curve give the
corresponding values of δη and ΔW for the optimal
protocol Λ⃗t

0 ¼ Λ⃗ϕϵ
t
determined from Eq. (17) for every

ϵ ∈ ½0; 1�. These curves form the boundary of achievable
fluctuations and efficiency for the chosen protocol γ, with
points below the curves inaccessible. In this case the Pareto
fronts are strictly convex, and hence the entire front is
determined by the minima of the scalarized objective
function (13) [60].
To summarize, we have constructed a general method for

performing multiobjective optimization of efficiency and
work fluctuations in microscopic heat engines operating
close to equilibrium. This method relies on determining a
thermodynamic metric tensor that encodes information
about both the efficiency and fluctuations simultaneously.
While we have here focused on the quantum regime, our
method can be readily applied to classical-stochastic
systems using the tensor (16), which we demonstrate in
Sec. C of the Supplemental Material [42] for the optimi-
zation of a classical harmonic oscillator. This formalism
opens an avenue to further applications and generalizations.
For example, in Ref. [42] we show that an analogous metric
providing Pareto optimal solutions for work fluctuations
and efficiency can be derived for engine cycles described
using Lindblad dynamics, and we derive the corresponding

expressions for Gaussian Lindbladians. Future investiga-
tions could focus on extending our approach to strongly
coupled quantum heat engines [62], or regimes far away
from equilibrium [19,63]. The Gaussian metric tensors we
have derived can also be used to study other aspects of
thermodynamic geometry, such as computing scalar cur-
vature [26] and geodesics along the manifold of thermal
Gaussian states [28].

We thank Martí Perarnau-Llobet for useful comments on
the manuscript. This work was financially supported by
Spanish MINECO (QIBEQI FIS2016-80773-P, ConTrAct
FIS2017-83709- R, and Severo Ochoa SEV-2015-0522),
Fundacio Privada Cellex, and the Generalitat de Catalunya
(CERCA Program and SGR1381). H. J. D. M. acknowl-
edges support from the Royal Commission for the
Exhibition of 1851.

[1] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[2] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys.

Rep. 694, 1 (2017).
[3] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365

(2014).
[4] K. Funo and M. Ueda, Phys. Rev. Lett. 115, 260601 (2015).
[5] A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101

(2015).
[6] A. C. Barato and U. Seifert, Phys. Rev. X 6, 041053 (2016).
[7] P. Pietzonka and U. Seifert, Phys. Rev. Lett. 120, 190602

(2018).
[8] V. Holubec and A. Ryabov, Phys. Rev. Lett. 121, 120601

(2018).
[9] A. P. Solon and J. M. Horowitz, Phys. Rev. Lett. 120,

180605 (2018).
[10] J. M. Horowitz and T. R. Gingrich, Nat. Phys. 16, 15 (2020).
[11] G. Guarnieri, G. T. Landi, S. R. Clark, and J. Goold, Phys.

Rev. Research 1, 033021 (2019).

0.1 0.15 0.2
0.6

0.7

0.8

0.9

1

0.1 0.14 0.18

0.8

0.9

FIG. 2. Left—The relative work fluctuations vs efficiency Pareto fronts for different values of cold temperature Tc. Overall neither the
relative work fluctuations nor the efficiency have a monotonic behavior with temperature. The parameters are set to ω0 ¼ 2, Th ¼
Tc þ ΔT with ΔT ¼ ω0, κ ¼ 0.4ω0. Right—Same as left, for different couplings between the two oscillators. Here we set ω0 ¼ 1,
Tc ¼ 0.25ω0, Th ¼ Tc þ ΔT with ΔT ¼ ω0 and N ¼ 50.

PHYSICAL REVIEW LETTERS 125, 260602 (2020)

260602-5

https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1103/PhysRevLett.115.260601
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevX.6.041053
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/PhysRevLett.120.180605
https://doi.org/10.1103/PhysRevLett.120.180605
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevResearch.1.033021


[12] P. Abiuso and M. Perarnau-Llobet, Phys. Rev. Lett. 124,
110606 (2020).

[13] T. Denzler and E. Lutz, arXiv:2007.01034.
[14] E. Aurell, C. Mejía-Monasterio, and P. Muratore-

Ginanneschi, Phys. Rev. Lett. 106, 250601 (2011).
[15] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301

(2007).
[16] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 89,

052140 (2014).
[17] V. Cavina, A. Mari, A. Carlini, and V. Giovannetti, Phys.

Rev. A 98, 012139 (2018).
[18] M. V. S. Bonanca and S. Deffner, Phys. Rev. E 98, 042103

(2018).
[19] T. V. Vu and Y. Hasegawa, arXiv:2005.02871.
[20] K. Brandner and K. Saito, Phys. Rev. Lett. 124, 040602

(2020).
[21] F. Weinhold, J. Chem. Phys. 63, 2479 (1975).
[22] F. Weinhold, J. Chem. Phys. 63, 2488 (1975).
[23] G. Ruppeiner, Phys. Rev. A 20, 1608 (1979).
[24] P. Salamon and R. S. Berry, Phys. Rev. Lett. 51, 1127

(1983).
[25] F. Schlögl, Z. Phys. B 59, 449 (1985).
[26] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995).
[27] G. E. Crooks, Phys. Rev. Lett. 99, 100602 (2007).
[28] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602

(2012).
[29] P. R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R.

Deweese, Phys. Rev. E 86, 041148 (2012).
[30] M. Scandi and M. Perarnau-Llobet, Quantum 3, 197

(2019).
[31] S. Deffner and M. V. S. Bonanca, Europhys. Lett. 131,

20001 (2020).
[32] H. J. D. Miller, M. Scandi, J. Anders, and M. Perarnau-

Llobet, Phys. Rev. Lett. 123, 230603 (2019).
[33] K. Miettinen, Nonlinear Multiobjective Optimization

(Springer Science & Business Media, New York, 1999).
[34] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[35] T. Speck and U. Seifert, Phys. Rev. E 70, 066112

(2004).
[36] D. Mandal and C. Jarzynski, J. Stat. Mech. (2016) 063204.
[37] J. Nulton, P. Salamon, B. Andresen, Q. Anmin, J. Nulton, P.

Salamon, B. Andresen, and Q. Anmin, J. Chem. Phys. 83,
334 (1985).

[38] J. Anders and V. Giovannetti, New J. Phys. 15, 033022
(2013).

[39] S. J. Large and D. A. Sivak, J. Stat. Mech. (2019) 083212.
[40] M. Scandi, H. J. D. Miller, J. Anders, and M. Perarnau-

Llobet, Phys. Rev. Research 2, 023377 (2020).
[41] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf,

T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys.
84, 621 (2012).

[42] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.260602 for deriva-
tions and further discussions of the results presented in the
main text. Sections A and B include Refs. [43,44], Sec. E
include Refs. [45–50].

[43] M. Tomamichel, M. Hayashi, and S. Member, IEEE Trans.
Inf. Theory 59, 7693 (2013).

[44] H. Janyszek, Rep. Math. Phys. 24, 11 (1986).
[45] R. Alicki and K. Lendi, Quantum Dynamical Semigroups

and Applications (Springer, New York, 2007).
[46] V. Cavina, A. Mari, and V. Giovannetti, Phys. Rev. Lett.

119, 050601 (2017).
[47] H. J. D. Miller, M. H. Mohammady, M. Perarnau-Llobet,

and G. Guarnieri, arXiv:2006.07316v2.
[48] B. Leggio, A. Napoli, A. Messina, and H.-P. Breuer, Phys.

Rev. A 88, 042111 (2013).
[49] J. M. Horowitz and J. M. R. Parrondo, New J. Phys. 15,

085028 (2013).
[50] G. Manzano, J. M. Horowitz, and J. M. R. Parrondo,

Phys. Rev. E 92, 032129 (2015).
[51] K. Brandner and U. Seifert, Phys. Rev. E 93, 062134

(2016).
[52] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. X 5,

031019 (2015).
[53] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102

(R) (2007).
[54] D. Petz, J. Math. Phys. (N.Y.) 35, 780 (1994).
[55] M. Hayashi, J. Phys. A 35, 7689 (2002).
[56] In this case one has t ∝ sðϕϵ

t Þ, where sðϕϵ
t Þ is the arclength

for the interval ½0;ϕϵ
t �. This means the curve γ∶t ↦ Λ⃗t is

traversed at constant velocity, leading to the equality
condition for the Cauchy-Schwartz inequality.

[57] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah,
E. Lutz, F. Schmidt-Kaler, and K. Singer, Science 352,
325 (2016).

[58] M. Mehboudi and J. M. R. Parrondo, New J. Phys. 21,
083036 (2019).

[59] The metric has a long and cumbersome analytical expres-
sion that we do not present.

[60] For a convex Pareto front, the full set of minima of I�
ϵ ∀ ϵ ∈

½0; 1� characterizes the entire front. However, points situated
along any nonconvex regions of the front cannot be
determined from minimizing I ϵ alone. In such situations,
one can additionally apply an adaptive weighted sum
method [61] to determine any nonconvex sections of the
front.

[61] I. Y. Kim and O. L. D. Weck, Struct. Multidisc. Optim. 29,
149 (2005).

[62] D. Newman, F. Mintert, and A. Nazir, Phys. Rev. E 95,
032139 (2017).

[63] S. Deffner and E. Lutz, Phys. Rev. E 87, 022143 (2013).

PHYSICAL REVIEW LETTERS 125, 260602 (2020)

260602-6

https://doi.org/10.1103/PhysRevLett.124.110606
https://doi.org/10.1103/PhysRevLett.124.110606
https://arXiv.org/abs/2007.01034
https://doi.org/10.1103/PhysRevLett.106.250601
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevE.89.052140
https://doi.org/10.1103/PhysRevE.89.052140
https://doi.org/10.1103/PhysRevA.98.012139
https://doi.org/10.1103/PhysRevA.98.012139
https://doi.org/10.1103/PhysRevE.98.042103
https://doi.org/10.1103/PhysRevE.98.042103
https://arXiv.org/abs/2005.02871
https://doi.org/10.1103/PhysRevLett.124.040602
https://doi.org/10.1103/PhysRevLett.124.040602
https://doi.org/10.1063/1.431689
https://doi.org/10.1063/1.431636
https://doi.org/10.1103/PhysRevA.20.1608
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1007/BF01328857
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1103/PhysRevLett.99.100602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevE.86.041148
https://doi.org/10.22331/q-2019-10-24-197
https://doi.org/10.22331/q-2019-10-24-197
https://doi.org/10.1209/0295-5075/131/20001
https://doi.org/10.1209/0295-5075/131/20001
https://doi.org/10.1103/PhysRevLett.123.230603
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.70.066112
https://doi.org/10.1103/PhysRevE.70.066112
https://doi.org/10.1088/1742-5468/2016/06/063204
https://doi.org/10.1063/1.449774
https://doi.org/10.1063/1.449774
https://doi.org/10.1088/1367-2630/15/3/033022
https://doi.org/10.1088/1367-2630/15/3/033022
https://doi.org/10.1088/1742-5468/ab342b
https://doi.org/10.1103/PhysRevResearch.2.023377
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.260602
https://doi.org/10.1109/TIT.2013.2276628
https://doi.org/10.1109/TIT.2013.2276628
https://doi.org/10.1016/0034-4877(86)90037-6
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevLett.119.050601
https://arXiv.org/abs/2006.07316v2
https://doi.org/10.1103/PhysRevA.88.042111
https://doi.org/10.1103/PhysRevA.88.042111
https://doi.org/10.1088/1367-2630/15/8/085028
https://doi.org/10.1088/1367-2630/15/8/085028
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1063/1.530611
https://doi.org/10.1088/0305-4470/35/36/302
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1088/1367-2630/ab30f4
https://doi.org/10.1088/1367-2630/ab30f4
https://doi.org/10.1007/s00158-004-0465-1
https://doi.org/10.1007/s00158-004-0465-1
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.87.022143

