152,283 research outputs found
The Angular Momenta of Neutron Stars and Black Holes as a Window on Supernovae
It is now clear that a subset of supernovae display evidence for jets and are
observed as gamma-ray bursts. The angular momentum distribution of massive
stellar endpoints provides a rare means of constraining the nature of the
central engine in core-collapse explosions. Unlike supermassive black holes,
the spin of stellar-mass black holes in X-ray binary systems is little affected
by accretion, and accurately reflects the spin set at birth. A modest number of
stellar-mass black hole angular momenta have now been measured using two
independent X-ray spectroscopic techniques. In contrast, rotation-powered
pulsars spin-down over time, via magnetic braking, but a modest number of natal
spin periods have now been estimated. For both canonical and extreme neutron
star parameters, statistical tests strongly suggest that the angular momentum
distributions of black holes and neutron stars are markedly different. Within
the context of prevalent models for core-collapse supernovae, the angular
momentum distributions are consistent with black holes typically being produced
in GRB-like supernovae with jets, and with neutron stars typically being
produced in supernovae with too little angular momentum to produce jets via
magnetohydrodynamic processes. It is possible that neutron stars are imbued
with high spin initially, and rapidly spun-down shortly after the supernova
event, but the available mechanisms may be inconsistent with some observed
pulsar properties.Comment: ApJ Letters, accepte
A Comparison of Intermediate Mass Black Hole Candidate ULXs and Stellar-Mass Black Holes
Cool thermal emission components have recently been revealed in the X-ray
spectra of a small number of ultra-luminous X-ray (ULX) sources with L_X > 1
E+40 erg/s in nearby galaxies. These components can be well fitted with
accretion disk models, with temperatures approximately 5-10 times lower than
disk temperatures measured in stellar-mass Galactic black holes when observed
in their brightest states. Because disk temperature is expected to fall with
increasing black hole mass, and because the X-ray luminosity of these sources
exceeds the Eddington limit for 10 Msun black holes (L_Edd = 1.3 E+39 erg/s),
these sources are extremely promising intermediate-mass black hole candidates
(IMBHCs). In this Letter, we directly compare the inferred disk temperatures
and luminosities of these ULXs, with the disk temperatures and luminosities of
a number of Galactic black holes. The sample of stellar-mass black holes was
selected to include different orbital periods, companion types, inclinations,
and column densities. These ULXs and stellar-mass black holes occupy distinct
regions of a L_X -- kT diagram, suggesting these ULXs may harbor IMBHs. We
briefly discuss the important strengths and weaknesses of this interpretation.Comment: 4 pages, 2 color figures, uses emulateapj.sty and apjfonts.sty, subm.
to ApJ
Hybrid Stars
Recently there have been important developments in the determination of
neutron star masses which put severe constraints on the composition and
equation of state (EOS) of the neutron star matter. Here we study the effect of
quark and nuclear matter mixed phase on mass radius relationship of neutron
stars employing recent models from two classes of EOS's and discuss their
implications.Comment: 3 pages LaTeX including 2 figures, macros included, Talk presented at
the IX International Symposium on Particles, Strings and Cosmology
(PASCOS'03), TIFR, Mumbai, India, January 3-8,2003. To appear in their
proceeding
Measuring the Spin of GRS 1915+105 with Relativistic Disk Reflection
GRS 1915+105 harbors one of the most massive known stellar black holes in the
Galaxy. In May 2007, we observed GRS 1915+105 for 117 ksec in the low/hard
state using Suzaku. We collected and analyzed the data with the HXD/PIN and XIS
cameras spanning the energy range from 2.3-55 keV. Fits to the spectra with
simple models reveal strong disk reflection through an Fe K emission line and a
Compton back-scattering hump. We report constraints on the spin parameter of
the black hole in GRS 1915+105 using relativistic disk reflection models. The
model for the soft X-ray spectrum (i.e. < 10 keV) suggests a/M = 0.56(2) and
excludes zero spin at the 4 sigma level of confidence. The model for the full
broadband spectrum suggests that the spin may be higher, a/M = 0.98(1) (1 sigma
confidence), and again excludes zero spin at the 2 sigma level of confidence.
We discuss these results in the context of other spin constraints and inner
disk studies in GRS 1915+105.Comment: Accepted for publication in Ap
Quantum wires from coupled InAs/GaAs strained quantum dots
The electronic structure of an infinite 1D array of vertically coupled
InAs/GaAs strained quantum dots is calculated using an eight-band
strain-dependent k-dot-p Hamiltonian. The coupled dots form a unique quantum
wire structure in which the miniband widths and effective masses are controlled
by the distance between the islands, d. The miniband structure is calculated as
a function of d, and it is shown that for d>4 nm the miniband is narrower than
the optical phonon energy, while the gap between the first and second minibands
is greater than the optical phonon energy. This leads to decreased optical
phonon scattering, providing improved quantum wire behavior at high
temperatures. These miniband properties are also ideal for Bloch oscillation.Comment: 5 pages revtex, epsf, 8 postscript figure
Polarization switching and induced birefringence in InGaAsP multiple quantum wells at 1.5 mu m
We analyze the 1.5mum wavelength operation of a room temperature polarization switch based on electron spin dynamics in InGaAsP multiple quantum wells. An unexpected difference in response for left and right circularly polarized pump light in pump-probe measurements was discovered and determined to be caused by an excess carrier induced birefringence. Transient polarization rotation and ellipticity were measured as a function of time delay. (C) 2002 American Institute of Physics.</p
On the problems of measuring transient temperature in cryogenic fluids
Cryogenic sensor errors in measuring transient temperature in cryogenic fluid
Parametric study of advanced multistage axial-flow compressors
Axial flow compressor study to increase pressure ratio and reduce overall lengt
- …