Cool thermal emission components have recently been revealed in the X-ray
spectra of a small number of ultra-luminous X-ray (ULX) sources with L_X > 1
E+40 erg/s in nearby galaxies. These components can be well fitted with
accretion disk models, with temperatures approximately 5-10 times lower than
disk temperatures measured in stellar-mass Galactic black holes when observed
in their brightest states. Because disk temperature is expected to fall with
increasing black hole mass, and because the X-ray luminosity of these sources
exceeds the Eddington limit for 10 Msun black holes (L_Edd = 1.3 E+39 erg/s),
these sources are extremely promising intermediate-mass black hole candidates
(IMBHCs). In this Letter, we directly compare the inferred disk temperatures
and luminosities of these ULXs, with the disk temperatures and luminosities of
a number of Galactic black holes. The sample of stellar-mass black holes was
selected to include different orbital periods, companion types, inclinations,
and column densities. These ULXs and stellar-mass black holes occupy distinct
regions of a L_X -- kT diagram, suggesting these ULXs may harbor IMBHs. We
briefly discuss the important strengths and weaknesses of this interpretation.Comment: 4 pages, 2 color figures, uses emulateapj.sty and apjfonts.sty, subm.
to ApJ