301 research outputs found

    Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice.

    Get PDF
    BACKGROUND: Treatment with the α-glucosidase inhibitor acarbose increases median lifespan by approximately 20% in male mice and 5% in females. This longevity extension differs from dietary restriction based on a number of features, including the relatively small effects on weight and the sex-specificity of the lifespan effect. By inhibiting host digestion, acarbose increases the flux of starch to the lower digestive system, resulting in changes to the gut microbiota and their fermentation products. Given the documented health benefits of short-chain fatty acids (SCFAs), the dominant products of starch fermentation by gut bacteria, this secondary effect of acarbose could contribute to increased longevity in mice. To explore this hypothesis, we compared the fecal microbiome of mice treated with acarbose to control mice at three independent study sites. RESULTS: Microbial communities and the concentrations of SCFAs in the feces of mice treated with acarbose were notably different from those of control mice. At all three study sites, the bloom of a single bacterial taxon was the most obvious response to acarbose treatment. The blooming populations were classified to the largely uncultured Bacteroidales family Muribaculaceae and were the same taxonomic unit at two of the three sites. Propionate concentrations in feces were consistently elevated in treated mice, while the concentrations of acetate and butyrate reflected a dependence on study site. Across all samples, Muribaculaceae abundance was strongly correlated with propionate and community composition was an important predictor of SCFA concentrations. Cox proportional hazards regression showed that the fecal concentrations of acetate, butyrate, and propionate were, together, predictive of mouse longevity even while controlling for sex, site, and acarbose. CONCLUSION: We observed a correlation between fecal SCFAs and lifespan in mice, suggesting a role of the gut microbiota in the longevity-enhancing properties of acarbose. Treatment modulated the taxonomic composition and fermentation products of the gut microbiome, while the site-dependence of the responses illustrate the challenges facing reproducibility and interpretation in microbiome studies. These results motivate future studies exploring manipulation of the gut microbial community and its fermentation products for increased longevity, testing causal roles of SCFAs in the observed effects of acarbose

    Team-focused implementation strategies to improve implementation of mental health screening and referral in rural Children\u27s Advocacy Centers: Study protocol for a pilot cluster randomized hybrid type 2 trial

    Get PDF
    BACKGROUND: Children\u27s Advocacy Centers (CACs) use multidisciplinary teams to investigate and respond to maltreatment allegations. CACs play a critical role in connecting children with mental health needs to evidence-based mental health treatment, especially in low-resourced rural areas. Standardized mental health screening and referral protocols can improve CACs\u27 capacity to identify children with mental health needs and encourage treatment engagement. In the team-based context of CACs, teamwork quality is likely to influence implementation processes and outcomes. Implementation strategies that target teams and apply the science of team effectiveness may enhance implementation outcomes in team-based settings. METHODS: We will use Implementation Mapping to develop team-focused implementation strategies to support the implementation of the Care Process Model for Pediatric Traumatic Stress (CPM-PTS), a standardized screening and referral protocol. Team-focused strategies will integrate activities from effective team development interventions. We will pilot team-focused implementation in a cluster-randomized hybrid type 2 effectiveness-implementation trial. Four rural CACs will implement the CPM-PTS after being randomized to either team-focused implementation (n = 2 CACs) or standard implementation (n = 2 CACs). We will assess the feasibility of team-focused implementation and explore between-group differences in hypothesized team-level mechanisms of change and implementation outcomes (implementation aim). We will use a within-group pre-post design to test the effectiveness of the CPM-PTS in increasing caregivers\u27 understanding of their child\u27s mental health needs and caregivers\u27 intentions to initiate mental health services (effectiveness aim). CONCLUSIONS: Targeting multidisciplinary teams is an innovative approach to improving implementation outcomes. This study will be one of the first to test team-focused implementation strategies that integrate effective team development interventions. Results will inform efforts to implement evidence-based practices in team-based service settings. TRIAL REGISTRATION: Clinicaltrials.gov, NCT05679154 . Registered on January 10, 2023

    Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons

    Get PDF
    Recent work with prion diseases and synucleinopathies indicates that accurate diagnostic methods for protein-folding diseases can be based on the ultrasensitive, amplified measurement of pathological aggregates in biospecimens. A better understanding of the physicochemical factors that control the seeded polymerization of such aggregates, and their amplification in vitro, should allow improvements in existing assay platforms, as well as the development of new assays for other proteopathic aggregates. Here, we systematically investigated the effects of the ionic environment on the polymerization of tau, α-synuclein, and the prion protein (PrP) induced by aggregates in biospecimens. We screened salts of the Hofmeister series, a relative ordering of strongly and weakly hydrated salts that tend to precipitate or solubilize proteins. We found that sensitivities of tau-based assays for Alzheimer’s seeds and PrP-based assays for prions were best in weakly hydrated anions. In contrast, we saw an inverse trend with different tau-based assays, improving detection sensitivity for progressive supranuclear palsy seeds by ≈106. Hofmeister analysis also improved detection of sporadic Creutzfeldt–Jakob disease prions in human nasal brushings and chronic wasting disease prions in deer-ear homogenates. Our results demonstrate strong and divergent influences of ionic environments on the amplification and detection of proteopathic seeds as biomarkers for protein-folding diseases

    Citizen Social Science for more integrative and effective climate action: a science-policy perspective

    Get PDF
    Governments are struggling to limit global temperatures below the 2°C Paris target with existing climate change policy approaches. This is because conventional climate policies have been predominantly (inter)nationally top-down, which limits citizen agency in driving policy change and influencing citizen behavior. Here we propose elevating Citizen Social Science (CSS) to a new level across governments as an advanced collaborative approach of accelerating climate action and policies that moves beyond conventional citizen science and participatory approaches. Moving beyond the traditional science-policy model of the democratization of science in enabling more inclusive climate policy change, we present examples of how CSS can potentially transform citizen behavior and enable citizens to become key agents in driving climate policy change. We also discuss the barriers that could impede the implementation of CSS and offer solutions to these. In doing this, we articulate the implications of increased citizen action through CSS in moving forward the broader normative and political program of transdisciplinary and co-productive climate change research and policy

    Sustaining The Saco Estuary: Final Report 2015

    Get PDF
    This study focuses on the Saco estuary, the tidal portion of the Saco River, which drains the largest watershed in southern Maine. With headwaters in the White Mountains of New Hampshire, the watershed encompasses more than 4,400 km2, and provides clean healthy drinking water to over 100,000 people living and working in communities in southern Maine. When the study began in 2009, very little was known about the ecology of the Saco estuary. Researchers at the University of New England and the Wells National Estuarine Research Reserve employed the process of collaborative learning to bring together people who care about the estuary in order to identify their concerns. A Stewardship Network composed of people employed by municipal, state and federal governments, water supply organizations and businesses, volunteers from municipal boards making land use decisions, land trusts, property owners and representatives from other organizations that are uniquely focused on the region was formed. The Stewardship Network helped to define the project goals and objectives, and provided input and guidance over the five-year project. This report explains what the researchers discovered about the ecology of the estuary, along with what they learned about its social and economic components. This baseline assessment contributes to the long-term goal of restoring and sustaining the structure and function of the estuary, and supports the efforts of government, businesses and local organizations that value the estuary and depend upon the natural services it provides

    NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury

    Get PDF
    BACKGROUND: A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models results in substantially enhanced axonal regeneration and a significant functional recovery. The potential therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord. METHODS: An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type. RESULTS: In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots. CONCLUSION: NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of such correlative investigations for demonstrating the clinical relevance of experimental data

    Prion Shedding from Olfactory Neurons into Nasal Secretions

    Get PDF
    This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrPSc, was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrPSc co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 103.9 median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrPSc amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants
    • …
    corecore