2,351 research outputs found

    Useless Med School Notes; Medical Education Through Mnemonics

    Get PDF
    BACKGROUND: The volume of content required for synthesis by medical students is immense and continues to grow as more insight and information is added to the existing compendium of medical knowledge. Mnemonics, memory palaces, and other visual memory aids have been used throughout history for assisting students and scholars in recalling information; offering an alternative to the practice of rote memorization. While technology has advanced and a shift towards paid-subscription services that offer pre-made mnemonics has gained great popularity among medical students, studies have shown that the act of creating the mnemonic in of itself serves as a powerful memory formation tool. OBJECTIVE: Through engaging students in social media platforms, this project aims to build a bank of mnemonics as well as engage users in the creation of their own mnemonics to facilitate richer and more interactive educational experiences. METHODS: Since its inception, this project has utilized instagram ® as a platform for social communication. Using the app GoodNotes ® as a drawing platform, images are created and then uploaded to instagram ® , where they are shared with the followers of the content. RESULTS: 250+ mnemonics have been created and posted to the platform, amassing over 1,100 followers. Each post averages 800+ views and 40-70 “likes” from followers. CONCLUSION: By increasing the reach of this social mnemonic service, this project intends to become a staple in assisting long-term memory formation for medical students. As the reach of this project continues to grow, it will provide opportunities to assess the impact and effectiveness of the various memory devices, as well as the power of influence that the project has on encouraging students to engage in the creation of their own visual means of learning

    Activation of the Listeria monocytogenes Virulence Program by a Reducing Environment.

    Get PDF
    Upon entry into the host cell cytosol, the facultative intracellular pathogen Listeria monocytogenes coordinates the expression of numerous essential virulence factors by allosteric binding of glutathione (GSH) to the Crp-Fnr family transcriptional regulator PrfA. Here, we report that robust virulence gene expression can be recapitulated by growing bacteria in a synthetic medium containing GSH or other chemical reducing agents. Bacteria grown under these conditions were 45-fold more virulent in an acute murine infection model and conferred greater immunity to a subsequent lethal challenge than bacteria grown in conventional media. During cultivation in vitro, PrfA activation was completely dependent on the intracellular levels of GSH, as a glutathione synthase mutant (ΔgshF) was activated by exogenous GSH but not reducing agents. PrfA activation was repressed in a synthetic medium supplemented with oligopeptides, but the repression was relieved by stimulation of the stringent response. These data suggest that cytosolic L. monocytogenes interprets a combination of metabolic and redox cues as a signal to initiate robust virulence gene expression in vivoIMPORTANCE Intracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions. Listeria monocytogenes is a model intracellular pathogen with robust in vitro and in vivo infection models. Studies of the host-sensing and downstream signaling mechanisms evolved by L. monocytogenes often describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence

    Quasiparticle Trapping in Microwave Kinetic Inductance Strip Detectors

    Get PDF
    Microwave Kinetic Inductance Detectors (MKIDs) are thin-film, superconducting resonators, which are attractive for making large detector arrays due to their natural frequency domain multiplexing at GHz frequencies. For X-ray to IR wavelengths, MKIDs can provide high-resolution energy and timing information for each incoming photon. By fabricating strip detectors consisting of a rectangular absorber coupled to MKIDs at each end, high quantum efficiency and spatial resolution can be obtained. A similar geometry is being pursued for phonon sensing in a WIMP dark matter detector. Various materials have been tested including tantalum, tin, and aluminum for the absorbing strip, and aluminum, titanium, and aluminum manganese for the MKID. Initial Ta/Al X-ray devices have shown energy resolutions as good as 62 eV at 6 keV. A Ta/Al UV strip detector with an energy resolution of 0.8 eV at 4.9 eV has been demonstrated, but we find the coupling of the MKIDs to the absorbers is unreliable for these thinner devices. We report on progress probing the thicknesses at which the absorber/MKID coupling begins to degrade by using a resonator to inject quasiparticles directly into the absorber. In order to eliminate the absorber/MKID interface, a modified design for implanted AlMn/Al UV strip detectors was developed, and results showing good transmission of quasiparticles from the absorber to MKID in these devices are presented

    Continued Play Following Sport-Related Concussion in United States Youth Soccer

    Get PDF
    International Journal of Exercise Science 13(6): 87-100, 2020. Medical guidelines and legislation in the US call for immediate removal from play and prohibit continued play on the same day if a concussion is suspected. However, there is limited literature examining whether these guidelines and laws are being followed in youth soccer. The purpose of this study was to identify the frequency at which youth soccer players continued play on the same day following sport-related concussion and factors that may be associated with this behavior. A retrospective review of youth soccer players diagnosed at the initial clinic visit with a sport-related concussion was performed. Participants were categorized into groups, those who continued play on the same day as their concussion (PLAY) and those who did not (NO PLAY). Records were reviewed for demographics, injury characteristics, SCAT3™ symptoms, mBESS and ImPACT® results, symptom resolution and return to play protocol initiation. Fifty-eight girls (mean age: 14 years, range: 7-18 years) and 29 boys (mean age: 14.4 years, range: 6-18 years) participated in this study. Thirty of 58 girls (51.7%) continued play the same day compared to only 5 of 29 boys (17.2%; p=0.002). The odds of continued play in girls were 5 times as high as the odds of continued play in boys (OR=5.05; 95% CI, 1.59-19.3). Overall, 35 (40.2%) soccer players continued play on the same day following a concussion. In conclusion, approximately 40% of youth soccer players continued play on the same day as their concussion. Girl soccer players demonstrated a significantly higher frequency of continued play than boys

    Flow and transport experiments for a streambank seep originating from a preferential flow pathway

    Get PDF
    Streambank seeps commonly originate from localized heterogeneity or preferential flow pathways (PFPs) in riparian floodplains. However, limited field data have been reported on ground water seep flows and solute transport to seeps from PFPs. The objective of this research was to build upon previous floodplain-scale investigations of PFPs by analyzing seep discharge and transport characteristics through a single PFP. An important research question was whether this PFP could be conceptualized as a homogeneous, one-dimensional flow path. Streambank seep discharge measurements were obtained by inducing a hydraulic head in a trench injection system. Also, co-injection of Rhodamine WT (RhWT) and a potassium chloride (KCl) tracer over a 60-min period was used to investigate transport dynamics. Seep discharge and breakthrough curves for electrical conductivity (EC) and RhWT were measured at the streambank using a lateral flow collection device. The breakthrough curves were fit to one-dimensional convective-dispersion equations (CDEs) to inversely estimate solute transport parameters. The PFP from which the seep originated was clean, coarse gravel (6% by mass less than 2.0 mm) surrounded by gravel with finer particles (20% by mass less than 2.0 mm). Located approximately 2 m from the trench, the seep (50 cm by 10 cm area) required at least 40 cm of hydraulic head for flow to emerge at the streambank. At a higher hydraulic head of 125 cm, seep discharge peaked at 3.5 L/min. This research verified that localized PFPs can result in the rapid transport of water (hydraulic conductivity on the order of 400 m/d) and solutes once reaching a sufficient near-bank hydraulic head. A one-dimensional equilibrium CDE was capable of simulating the EC (R2 = 0.94) and RhWT (R2 = 0.91) breakthrough curves with minimal RhWT sorption (distribution coefficient, Kd, equal to 0.1 cm3/g). Therefore, the PFP could be conceptualized as a one-dimensional, homogenous flow and transport pathway. These results are consistent with previous research observing larger-scale phosphorus transport

    Verbal Learning and Memory After Cochlear Implantation in Postlingually Deaf Adults: Some New Findings with the CVLT-II

    Get PDF
    OBJECTIVES: Despite the importance of verbal learning and memory in speech and language processing, this domain of cognitive functioning has been virtually ignored in clinical studies of hearing loss and cochlear implants in both adults and children. In this article, we report the results of two studies that used a newly developed visually based version of the California Verbal Learning Test-Second Edition (CVLT-II), a well-known normed neuropsychological measure of verbal learning and memory. DESIGN: The first study established the validity and feasibility of a computer-controlled visual version of the CVLT-II, which eliminates the effects of audibility of spoken stimuli, in groups of young normal-hearing and older normal-hearing (ONH) adults. A second study was then carried out using the visual CVLT-II format with a group of older postlingually deaf experienced cochlear implant (ECI) users (N = 25) and a group of ONH controls (N = 25) who were matched to ECI users for age, socioeconomic status, and nonverbal IQ. In addition to the visual CVLT-II, subjects provided data on demographics, hearing history, nonverbal IQ, reading fluency, vocabulary, and short-term memory span for visually presented digits. ECI participants were also tested for speech recognition in quiet. RESULTS: The ECI and ONH groups did not differ on most measures of verbal learning and memory obtained with the visual CVLT-II, but deficits were identified in ECI participants that were related to recency recall, the buildup of proactive interference, and retrieval-induced forgetting. Within the ECI group, nonverbal fluid IQ, reading fluency, and resistance to the buildup of proactive interference from the CVLT-II consistently predicted better speech recognition outcomes. CONCLUSIONS: Results from this study suggest that several underlying foundational neurocognitive abilities are related to core speech perception outcomes after implantation in older adults. Implications of these findings for explaining individual differences and variability and predicting speech recognition outcomes after implantation are discussed

    The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains

    Get PDF
    The floodplains of many gravel-bed streams have a general stratigraphy that consists of a layer of topsoil covering gravel-dominated subsoil. Previous research has demonstrated that this stratigraphy can facilitate preferential groundwater flow through focused linear features, such as paleochannels, or gravelly regions within the vadose zone. These areas within the floodplain vadose zone may provide a route for interactions between the floodplain surface and alluvial groundwater, effectively extending the hyporheic zone across the floodplain during high stream stage. The objective of this research was to assess the structure and scale of texture heterogeneity within the vadose zone within the gravel subsoils of alluvial floodplains using resistivity data combined with hydraulic testing and sediment sampling of the vadose zone. Point-scale and broad-scale methodologies in combination can help us understand spatial heterogeneity in hydraulic conductivity without the need for a large number of invasive hydraulic tests. The evaluated sites in the Ozark region of the United States were selected due to previous investigations indicating that significant high conductivity flow zones existed in a matrix which include almost no clay content. Data indicated that resistivity corresponded with the fine content in the vadose zone and subsequently corresponds to the saturated hydraulic conductivity. Statistical analysis of resistivity data, and supported by data from the soil sampling and permeameter hydraulic testing, identified isolated high flow regions and zones that can be characterized as broad-scale high hydraulic conductivity features with potentially significant consequences for the migration of water and solutes and therefore are of biogeochemical and ecological significance

    Interactions Between Moderate- and Long-Period Giant Planets: Scattering Experiments for Systems in Isolation and with Stellar Flybys

    Full text link
    The chance that a planetary system will interact with another member of its host star's nascent cluster would be greatly increased if gas giant planets form in situ on wide orbits. In this paper, we explore the outcomes of planet-planet scattering for a distribution of multiplanet systems that all have one of the planets on an initial orbit of 100 AU. The scattering experiments are run with and without stellar flybys. We convolve the outcomes with distributions for protoplanetary disk and stellar cluster sizes to generalize the results where possible. We find that the frequencies of large mutual inclinations and high eccentricities are sensitive to the number of planets in a system, but not strongly to stellar flybys. However, flybys do play a role in changing the low and moderate portions of the mutual inclination distributions, and erase dynamically cold initial conditions on average. Wide-orbit planets can be mixed throughout the planetary system, and in some cases, can potentially become hot Jupiters, which we demonstrate using scattering experiments that include a tidal damping model. If planets form on wide orbits in situ, then there will be discernible differences in the proper motion distributions of a sample of wide-orbit planets compared with a pure scattering formation mechanism. Stellar flybys can enhance the frequency of ejections in planetary systems, but auto-ionization is likely to remain the dominant source of free-floating planets.Comment: Accepted for publication by Ap

    Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy

    Get PDF
    Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields
    corecore