102 research outputs found
Fine structure of alpha decay in odd nuclei
Using an alpha decay level scheme, an explanation for the fine structure in
odd nuclei is evidenced by taking into account the radial and rotational
couplings between the unpaired nucleon and the core of the decaying system. It
is stated that the experimental behavior of the alpha decay fine structure
phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review
Warm strange hadronic matter in an effective model with a weak Y-Y interaction
An effective model is used to study the equation of state of warm strange
hadronic matter with nucleons, Lambda-hyperons, Xi-hyperons, sigmastar and phi.
In the calculation, a newest weak Y-Y interaction deduced from the recent
observation of a He double hypernucleus is adopted. Employing this effective
model, the results with strong Y-Y interaction and weak Y-Y interaction are
compared.Comment: 9 pages, 9 figure
Hypernuclear spectroscopy with K at rest on Li, Be, C and O
The FINUDA experiment collected data to study the production of hypernuclei
on different nuclear targets. The hypernucleus formation occurred through the
strangeness-exchange reaction K^-_{stop} + \; ^AZ \rightarrow \; ^A_{\Lambda}Z
+ \pi^-. From the analysis of the momentum of the emerging , binding
energies and formation probabilities of Li, Be,
C and O have been measured and are here
presented. The behavior of the formation probability as a function of the
atomic mass number A is also discussed.Comment: Accepted for publication in PL
Gamma-Ray Spectroscopy of O and N Hypernuclei via the O reaction
he bound-state level structures of the O and
N hypernuclei were studied by -ray spectroscopy using
a germanium detector array (Hyperball) via the O ()
reaction. A level scheme for O was determined from the
observation of three -ray transitions from the doublet of states
(,) at MeV to the ground-state doublet (,). The
N hypernuclei were produced via proton emission from unbound
states in O . Three -rays were observed and the
lifetime of the state in N was measured by the
Doppler shift attenuation method. By comparing the experimental results with
shell-model calculations, the spin-dependence of the interaction is
discussed. In particular, the measured O ground-state doublet
spacing of 26.4 1.6 0.5 keV determines a small but nonzero strength
of the tensor interaction.Comment: 22 pages, 17 figure
Strange nuclear matter within Brueckner-Hartree-Fock Theory
We have developed a formalism for microscopic Brueckner-type calculations of
dense nuclear matter that includes all types of baryon-baryon interactions and
allows to treat any asymmetry on the fractions of the different species (n, p,
, , , , and ). We present
results for the different single-particle potentials focussing on situations
that can be relevant in future microscopic studies of beta-stable neutron star
matter with strangeness. We find the both the hyperon-nucleon and
hyperon-hyperon interactions play a non-negligible role in determining the
chemical potentials of the different species.Comment: 36 pages, LateX, includes 8 PostScript figures, (submitted to PRC
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
Quantum Monte Carlo calculations of nuclei
We report on quantum Monte Carlo calculations of the ground and low-lying
excited states of nuclei using realistic Hamiltonians containing the
Argonne two-nucleon potential alone or with one of several
three-nucleon potentials, including Urbana IX and three of the new Illinois
models. The calculations begin with correlated many-body wave functions that
have an -like core and multiple p-shell nucleons, -coupled to the
appropriate quantum numbers for the state of interest. After
optimization, these variational trial functions are used as input to a Green's
function Monte Carlo calculation of the energy, using a constrained path
algorithm. We find that the Hamiltonians that include Illinois three-nucleon
potentials reproduce ten states in Li, Be, Be, and B with
an rms deviation as little as 900 keV. In particular, we obtain the correct
3 ground state for B, whereas the Argonne alone or with
Urbana IX predicts a 1 ground state. In addition, we calculate isovector
and isotensor energy differences, electromagnetic moments, and one- and
two-body density distributions.Comment: 28 pages, 12 tables, 7 figure
Strangeness nuclear physics: a critical review on selected topics
Selected topics in strangeness nuclear physics are critically reviewed. This
includes production, structure and weak decay of --Hypernuclei, the
nuclear interaction and the possible existence of bound
states in nuclei. Perspectives for future studies on these issues are also
outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical
Journal
Pentaquark as Kaon-Nucleon Resonance
Several recent experiments have reported evidence for a narrow feature in the
K(+)-neutron system, an apparent resonant state ~ 100 MeV above threshold and
with a width < 25 MeV. This state has been labelled as Theta(+) (previously as
Z(*)), and because of the implied inclusion of a anti-strange quark, is
referred to as a pentaquark, that is, five quarks within a single bag. We
present an alternative explanation for such a structure, as a higher angular
momentum resonance in the isospin zero K(+) -N system. One might call this an
exit channel or a molecular resonance. In a non-relativistic potential model we
find a possible candidate for the kaon-nucleon system with relative angular
momentum L=3, while L=1 and 2 states possess centrifugal barriers too low to
confine the kaon and nucleon in a narrow state at an energy so high above
threshold. A rather strong state-dependence in the potential is essential,
however, for eliminating an observable L=2 resonance at lower energies.Comment: 4 page
QCD Sum Rules for Hyperons in Nuclear Matter
Within finite-density QCD sum-rule approach we investigate the self-energies
of hyperons propagating in nuclear matter from a correlator of
interpolating fields evaluated in the nuclear matter ground state. We
find that the Lorentz vector self-energy of the is similar to the
nucleon vector self-energy. The magnitude of Lorentz scalar self-energy of the
is also close to the corresponding value for nucleon; however, this
prediction is sensitive to the strangeness content of the nucleon and to the
assumed density dependence of certain four-quark condensate. The scalar and
vector self-energies tend to cancel, but not completely. The implications for
the couplings of to the scalar and vector mesons in nuclear matter and
for the spin-orbit force in a finite nucleus are discussed.Comment: 20 pages in revtex, 6 figures available under request as ps files,
UMD preprint #94--11
- …