102 research outputs found

    Fine structure of alpha decay in odd nuclei

    Get PDF
    Using an alpha decay level scheme, an explanation for the fine structure in odd nuclei is evidenced by taking into account the radial and rotational couplings between the unpaired nucleon and the core of the decaying system. It is stated that the experimental behavior of the alpha decay fine structure phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review

    Warm strange hadronic matter in an effective model with a weak Y-Y interaction

    Full text link
    An effective model is used to study the equation of state of warm strange hadronic matter with nucleons, Lambda-hyperons, Xi-hyperons, sigmastar and phi. In the calculation, a newest weak Y-Y interaction deduced from the recent observation of a He double hypernucleus is adopted. Employing this effective model, the results with strong Y-Y interaction and weak Y-Y interaction are compared.Comment: 9 pages, 9 figure

    Hypernuclear spectroscopy with K^- at rest on 7^7Li, 9^9Be, 13^{13}C and 16^{16}O

    Full text link
    The FINUDA experiment collected data to study the production of hypernuclei on different nuclear targets. The hypernucleus formation occurred through the strangeness-exchange reaction K^-_{stop} + \; ^AZ \rightarrow \; ^A_{\Lambda}Z + \pi^-. From the analysis of the momentum of the emerging π\pi^-, binding energies and formation probabilities of Λ7^7_{\Lambda}Li, Λ9^9_{\Lambda}Be, Λ13^{13}_{\Lambda}C and Λ16^{16}_{\Lambda}O have been measured and are here presented. The behavior of the formation probability as a function of the atomic mass number A is also discussed.Comment: Accepted for publication in PL

    Gamma-Ray Spectroscopy of Λ16^{16}_\LambdaO and Λ15^{15}_\LambdaN Hypernuclei via the 16^{16}O(K,π)(K^-, \pi^-) reaction

    Full text link
    he bound-state level structures of the Λ16^{16}_{\Lambda}O and Λ15^{15}_{\Lambda}N hypernuclei were studied by γ\gamma-ray spectroscopy using a germanium detector array (Hyperball) via the 16^{16}O (K,πγK^-, \pi^- \gamma) reaction. A level scheme for Λ16^{16}_{\Lambda}O was determined from the observation of three γ\gamma-ray transitions from the doublet of states (22^-,11^-) at 6.7\sim 6.7 MeV to the ground-state doublet (11^-,00^-). The Λ15^{15}_{\Lambda}N hypernuclei were produced via proton emission from unbound states in Λ16^{16}_{\Lambda}O . Three γ\gamma -rays were observed and the lifetime of the 1/2+;11/2^+;1 state in Λ15^{15}_{\Lambda}N was measured by the Doppler shift attenuation method. By comparing the experimental results with shell-model calculations, the spin-dependence of the ΛN\Lambda N interaction is discussed. In particular, the measured Λ16^{16}_{\Lambda}O ground-state doublet spacing of 26.4 ±\pm 1.6 ±\pm 0.5 keV determines a small but nonzero strength of the ΛN\Lambda N tensor interaction.Comment: 22 pages, 17 figure

    Strange nuclear matter within Brueckner-Hartree-Fock Theory

    Get PDF
    We have developed a formalism for microscopic Brueckner-type calculations of dense nuclear matter that includes all types of baryon-baryon interactions and allows to treat any asymmetry on the fractions of the different species (n, p, Λ\Lambda, Σ0\Sigma^0, Σ+\Sigma^+, Σ\Sigma^-, Ξ\Xi^- and Ξ0\Xi^0). We present results for the different single-particle potentials focussing on situations that can be relevant in future microscopic studies of beta-stable neutron star matter with strangeness. We find the both the hyperon-nucleon and hyperon-hyperon interactions play a non-negligible role in determining the chemical potentials of the different species.Comment: 36 pages, LateX, includes 8 PostScript figures, (submitted to PRC

    Spectroscopic factors for bound s-wave states derived from neutron scattering lengths

    Full text link
    A simple and model-independent method is described to derive neutron single-particle spectroscopic factors of bound s-wave states in A+1Z=AZn^{A+1}Z = ^{A}Z \otimes n nuclei from neutron scattering lengths. Spectroscopic factors for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and ^{41}Ar are compared to results derived from transfer experiments using the well-known DWBA analysis and to shell model calculations. The scattering length of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC, uuencoded tex-files and postscript-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u

    Quantum Monte Carlo calculations of A=9,10A=9,10 nuclei

    Get PDF
    We report on quantum Monte Carlo calculations of the ground and low-lying excited states of A=9,10A=9,10 nuclei using realistic Hamiltonians containing the Argonne v18v_{18} two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an α\alpha-like core and multiple p-shell nucleons, LSLS-coupled to the appropriate (Jπ;T)(J^{\pi};T) quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in 9^9Li, 9^9Be, 10^{10}Be, and 10^{10}B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3+^+ ground state for 10^{10}B, whereas the Argonne v18v_{18} alone or with Urbana IX predicts a 1+^+ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.Comment: 28 pages, 12 tables, 7 figure

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Pentaquark as Kaon-Nucleon Resonance

    Full text link
    Several recent experiments have reported evidence for a narrow feature in the K(+)-neutron system, an apparent resonant state ~ 100 MeV above threshold and with a width < 25 MeV. This state has been labelled as Theta(+) (previously as Z(*)), and because of the implied inclusion of a anti-strange quark, is referred to as a pentaquark, that is, five quarks within a single bag. We present an alternative explanation for such a structure, as a higher angular momentum resonance in the isospin zero K(+) -N system. One might call this an exit channel or a molecular resonance. In a non-relativistic potential model we find a possible candidate for the kaon-nucleon system with relative angular momentum L=3, while L=1 and 2 states possess centrifugal barriers too low to confine the kaon and nucleon in a narrow state at an energy so high above threshold. A rather strong state-dependence in the potential is essential, however, for eliminating an observable L=2 resonance at lower energies.Comment: 4 page

    QCD Sum Rules for Σ\Sigma Hyperons in Nuclear Matter

    Full text link
    Within finite-density QCD sum-rule approach we investigate the self-energies of Σ\Sigma hyperons propagating in nuclear matter from a correlator of Σ\Sigma interpolating fields evaluated in the nuclear matter ground state. We find that the Lorentz vector self-energy of the Σ\Sigma is similar to the nucleon vector self-energy. The magnitude of Lorentz scalar self-energy of the Σ\Sigma is also close to the corresponding value for nucleon; however, this prediction is sensitive to the strangeness content of the nucleon and to the assumed density dependence of certain four-quark condensate. The scalar and vector self-energies tend to cancel, but not completely. The implications for the couplings of Σ\Sigma to the scalar and vector mesons in nuclear matter and for the Σ\Sigma spin-orbit force in a finite nucleus are discussed.Comment: 20 pages in revtex, 6 figures available under request as ps files, UMD preprint #94--11
    corecore