730 research outputs found
Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances
We demonstrate simultaneous center-of-mass cooling of two coupled
oscillators, consisting of a microsphere-cantilever and a tapered optical
fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via
the evanescent field of the taper, provides a transduction signal that
continuously monitors the relative motion between these two microgram objects
with a sensitivity of 3 pm. The cavity enhanced optical dipole force is used to
provide feedback damping on the motion of the micron-diameter taper, whereas a
piezo stack is used to damp the motion of the much larger (up to m in
diameter), heavier (up to kg) and stiffer
microsphere-cantilever. In each feedback scheme multiple mechanical modes of
each oscillator can be cooled, and mode temperatures below 10 K are reached for
the dominant mode, consistent with limits determined by the measurement noise
of our system. This represents stabilization on the picometer level and is the
first demonstration of using WGM resonances to cool the mechanical modes of
both the WGM resonator and its coupling waveguide.Comment: 10 pages, 8 figure
New routes to sulphur-nitrogen compounds
Several reactions have been investigated in the search for new routes to cyclic sulphur-nitrogen compounds. Pyridine -1- oxide and trithiazyl trichloride were found to rearrange (after initial adduct formation) to form a compound bearing some resemblance to the pyridine adduct of sulphanuric chloride. This work has also established that barium and sodium trisulphimide salts are potential starting materials both for sulphanuric (six-membered) rings and for rings with exocyclic functional groups containing sulphur (probably O.SO.Cl). It is also possible that plumbic acetate may be an acceptable oxidising agent for the preparation of sulphur (VI) systems, as witnessed its reaction with thiodithiazyl dichloride, However, mercuric oxide has proved of no value in this role under the conditions anployed in this work.The effort to achieve sulphur-nitrogenr-carbon systems was partly devoted to the reaction between potassium thiocyanate and trithiazyl tricliloride, but mainly to the preparation of air-and moisture-stable derivatives of the suspected dithiadiazoles. Apparent success has been achieved using diphenylketiminolithium. It can be concluded from this work that several new routes might be obtainable after further research, though the most potentially-useful, and practicable work appears to be that connected with the dithiadiazoles
Cavity cooling a single charged nanoparticle
The development of laser cooling coupled with the ability to trap atoms and
ions in electromagnetic fields, has revolutionised atomic and optical physics,
leading to the development of atomic clocks, high-resolution spectroscopy and
applications in quantum simulation and processing. However, complex systems,
such as large molecules and nanoparticles, lack the simple internal resonances
required for laser cooling. Here we report on a hybrid scheme that uses the
external resonance of an optical cavity, combined with radio frequency (RF)
fields, to trap and cool a single charged nanoparticle. An RF Paul trap allows
confinement in vacuum, avoiding instabilities that arise from optical fields
alone, and crucially actively participates in the cooling process. This system
offers great promise for cooling and trapping a wide range of complex charged
particles with applications in precision force sensing, mass spectrometry,
exploration of quantum mechanics at large mass scales and the possibility of
creating large quantum superpositions.Comment: 8 pages, 5 figures Updated version includes additional references,
new title, and supplementary information include
Optomechanical cooling of levitated spheres with doubly-resonant fields
Optomechanical cooling of levitated dielectric particles represents a
promising new approach in the quest to cool small mechanical resonators towards
their quantum ground state. We investigate two-mode cooling of levitated
nanospheres in a self-trapping regime. We identify a rich structure of split
sidebands (by a mechanism unrelated to usual strong-coupling effects) and
strong cooling even when one mode is blue detuned. We show the best regimes
occur when both optical fields cooperatively cool and trap the nanosphere,
where cooling rates are over an order of magnitude faster compared to
corresponding single-sideband cooling rates.Comment: 8 Pages, 7 figure
Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere
This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics and leading to applications from energy harvesting to medical imaging. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics. © 2014 Macmillan Publishers Limited. All rights reserved.EPSRCRoyal Thai GovernmentRoyal SocietyEuropean COST networ
A Cation-Ï€ Interaction in the Binding Site of the Glycine Receptor Is Mediated by a Phenylalanine Residue
Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-{pi} interaction with the agonist, whereas in GABAA receptors, a Tyr performs this role. The glycine receptor binding site, however, contains predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe207, and possibly a third, Phe63, are positioned such that they could contribute to a cation-{pi} interaction with the primary amine of glycine. Here, we test this hypothesis by incorporation of a series of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC50 value and the cation-{pi} binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-{pi} interaction between glycine and Phe159. The data thus provide an anchor point for locating glycine in its binding site, and demonstrate for the first time a cation-{pi} interaction between Phe and a neurotransmitter
Exploring the Impacts of Predictor Variables on Success in a Mental Health Diversion Program
Since the first Mental Health Court (MHC) in 1997, there has been a steady increase of MHCs all over the country. With the introduction of these new specialty courts have also come to introduction of diversion programs. Diversion programs work to connect offenders who have mental illnesses to community-based mental health treatment services as an alternative to incarceration. Typically, with the completion of the program comes with the benefit of having their charges dropped. Diversion programs aim to reduce recidivism in offenders with mental illness and improve their access to treatment
Dynamics of levitated nanospheres: towards the strong coupling regime
The use of levitated nanospheres represents a new paradigm for the
optomechanical cooling of a small mechanical oscillator, with the prospect of
realising quantum oscillators with unprecedentedly high quality factors. We
investigate the dynamics of this system, especially in the so-called
self-trapping regimes, where one or more optical fields simultaneously trap and
cool the mechanical oscillator. The determining characteristic of this regime
is that both the mechanical frequency and single-photon
optomechanical coupling strength parameters are a function of the optical
field intensities, in contrast to usual set-ups where and are
constant for the given system. We also measure the characteristic transverse
and axial trapping frequencies of different sized silica nanospheres in a
simple optical standing wave potential, for spheres of radii \,nm,
illustrating a protocol for loading single nanospheres into a standing wave
optical trap that would be formed by an optical cavity. We use this data to
confirm the dependence of the effective optomechanical coupling strength on
sphere radius for levitated nanospheres in an optical cavity and discuss the
prospects for reaching regimes of strong light-matter coupling. Theoretical
semiclassical and quantum displacement noise spectra show that for larger
nanospheres with \,nm a range of interesting and novel dynamical
regimes can be accessed. These include simultaneous hybridization of the two
optical modes with the mechanical modes and parameter regimes where the system
is bistable. We show that here, in contrast to typical single-optical mode
optomechanical systems, bistabilities are independent of intracavity intensity
and can occur for very weak laser driving amplitudes
- …