232 research outputs found
An Assessment Compact: changing the way an institution thinks about assessment and feedback
Offered as a case-study, this chapter considers the introduction by Oxford Brookes University of an Assessment Compact (defined as a non-legally enforceable agreement) between the university and its students. The aim of the Compact is to reconceptualise thinking about assessment and feedback in the institution to bring about significant change in both assessment practices, and attitudes to assessment and feedback among staff and students, rather than just consolidate current practice. The chapter will consider the difficulties and challenges that have been faced in the implementation of the Compact, and the degree to which it has so far been successful, and why
The affective life of neoliberal employability discourse
This chapter argues that the affective life of neoliberalism should be taken seriously since it permeates the formation of neoliberal reason, including the identification of goals, or âhappy objectsâ, to which individuals are encouraged to aspire (Ahmed, The affect theory reader. Duke University Press, Durham North Carolina, 2010; Anderson, Progress in Human Geography, 40, 734â753, 2016). The chapter examines neoliberal practices that shape the subjectivities of university students and encourage their valorisation of the happy object of graduate employability. It shows how some graduates are led to seek employability by learning to âplay the gameâ of displaying qualities they believe employers expect, and by inhabiting a discourse of responsibility and initiative, whilst at the same time becoming more anxious and dependent on the expanding market for employability advice
Treadmill training augmented with real-time visualisation feedback and function electrical stimulation for gait rehabilitation after stroke : a feasibility study
Background:Â Stroke rehabilitation often uses the motor relearning concept that require patients to perform active practice of skill-specific training and to receive feedback. Treadmill training augmented with real-time visualisation feedback and functional electrical stimulation may have a beneficial synergistic effect on motor recovery. This study aims to determine the feasibility of this kind of enhanced treadmill training for gait rehabilitation among patients after stroke. Methods:Â A system for dynamic visualisation of lower-limb movement based on 3-dimensional motion capture and a computer timed functional electrical stimulation system was developed. Participants received up to 20-min enhanced treadmill training instead of their over-ground gait training once or twice a week for 6 weeks at Coathill hospital, Lanarkshire, United Kingdom. Number of training sessions attended, and training duration were used to assess feasibility. Ankle kinematics in the sagittal plane of walking with and without functional electrical stimulation support of the pre-tibial muscles were also compared and used to confirm the functional electrical stimulation was triggered at the targeted time Results:Â Six patients after stroke participated in the study. The majority of participants were male (5/6) with a age range from 30 to 84 years and 4/6 had left hemiplegia. All participants suffered from brain infarction and were at least 3 months after stroke. Number of training sessions attended ranged from 5 to 12. The duration of training sessions ranged from 11 to 20 min. No serious adverse events were reported. The computerised functional electrical stimulation to the pre-tibial muscles was able to reduce plantar flexion angle during the swing phase with statistical significance (p= 0.015 at 80%;p= 0.008 at 90 and 100% of the gait cycle).Conclusions:It is safe and feasible to use treadmill gait training augmented with real-time visual feedback and computer-controlled functional electrical stimulation with patients after stroke in routine clinical practice. Trial registration: NCT03348215. Registered 20 November 2017
Determination of the Relative and Absolute Configurations of the Female-produced Sex Pheromone of the Cerambycid Beetle Prionus californicus
We previously identified the basic structure of the female-produced sex attractant pheromone of the cerambycid beetle, Prionus californicus Motschulsky (Cerambycidae: Prioninae), as 3,5-dimethyldodecanoic acid. A synthesized mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was highly attractive to male beetles. Here, we describe stereoselective syntheses of three of the four possible stereoisomers, and the results of laboratory and field bioassays showing that male beetles are attracted specifically to (3R,5S)-3,5-dimethyldodecanoic acid, but not to its enantiomer, (3S,5R)-3,5-dimethyldodecanoic acid, indicating that the (3R,5S)-enantiomer is the active pheromone component. The diastereomeric (3R,5R)- and (3S,5S)-enantiomers were excluded from consideration because their gas chromatographic retention times were different from that of the insect-produced compound. The mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was as attractive to male P. californicus as the (3R,5S)-enantiomer, indicating that none of the other three stereoisomers inhibited responses to the active enantiomer. Beetles responded to as little as 10Â ng and 10Â ÎŒg of synthetic 3,5-dimethyldodecanoic acid in laboratory and field studies, respectively. Field studies indicated that capture rate did not increase with dosages of 3,5-dimethyldodecanoic acid greater than 100Â ÎŒg. In field bioassays, males of a congeneric species, P. lecontei Lameere, were captured in southern California but not in Idaho
The circadian clock gene circuit controls protein and phosphoprotein rhythms in Arabidopsis thaliana
Twenty-four-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to test the circadian regulation of protein abundance and modification. Here we present circadian proteomic and phosphoproteomic time series from Arabidopsis thaliana plants under constant light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites were most phosphorylated at subjective dawn, a pattern we term the âphospho-dawn.â Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-overexpressing line that disables the clock gene circuit lacked most circadian protein phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-overexpression still tended to peak in abundance close to subjective dawn, suggesting that the canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation rhythms. To test the potential functional relevance of our datasets, we conducted phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets is controlled by the clock gene circuit, implicating posttranslational mechanisms in the transmission of circadian timing information in plants
University for the Creative Arts staff research 2011
This publication brings together a selection of the Universityâs current research. The contributions foreground areas of research strength including still and moving image research, applied arts and crafts, as well as emerging fields of investigations such as design and architecture. It also maps thematic concerns across disciplinary areas that focus on models and processes of creative practice, value formations and processes of identification through art and artefacts as well as cross-cultural connectivity. Dr. Seymour Roworth-Stoke
"We have no voice for that" : Land Rights, Power, and Gender in Rural Sierra Leone
Acknowledgements I wish to thank the participants in the Gender and Land Governance Conference at Utrecht University in January 2013 for helpful comments and suggestions. Funding I would like to thank the Faculty of Management at Radboud University Nijmegen for funding the six months of fieldwork on which this article is based.Peer reviewedPostprin
Multiscale digital Arabidopsis predicts individual organ and whole-organism growth
Understanding how dynamic molecular networks affect wholeorganism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field. (Résumé d'auteur
Ice Lines, Planetesimal Composition and Solid Surface Density in the Solar Nebula
To date, there is no core accretion simulation that can successfully account
for the formation of Uranus or Neptune within the observed 2-3 Myr lifetimes of
protoplanetary disks. Since solid accretion rate is directly proportional to
the available planetesimal surface density, one way to speed up planet
formation is to take a full accounting of all the planetesimal-forming solids
present in the solar nebula. By combining a viscously evolving protostellar
disk with a kinetic model of ice formation, we calculate the solid surface
density in the solar nebula as a function of heliocentric distance and time. We
find three effects that strongly favor giant planet formation: (1) a decretion
flow that brings mass from the inner solar nebula to the giant planet-forming
region, (2) recent lab results (Collings et al. 2004) showing that the ammonia
and water ice lines should coincide, and (3) the presence of a substantial
amount of methane ice in the trans-Saturnian region. Our results show higher
solid surface densities than assumed in the core accretion models of Pollack et
al. (1996) by a factor of 3 to 4 throughout the trans-Saturnian region. We also
discuss the location of ice lines and their movement through the solar nebula,
and provide new constraints on the possible initial disk configurations from
gravitational stability arguments.Comment: Version 2: reflects lead author's name and affiliation change,
contains minor changes to text from version 1. 12 figures, 7 tables, accepted
for publication in Icaru
- âŠ