10 research outputs found

    Newborn Sequencing in Genomic Medicine and Public Health

    Get PDF
    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening

    Brazilian cave heritage under siege

    Get PDF
    info:eu-repo/semantics/publishe

    Studying the Physical­chemical Transformations at Resource­saving Reduction Melting of Chrome–nickel­containing Metallurgical Waste

    Full text link
    We have investigated the physicochemical characteristics of chromium-nickel-containing waste from the production of corrosion-resistant steels and a doped alloy obtained by reduction smelting. This is necessary to determine the parameters that reduce the losses of Ni and Cr during the processing of doped oxide raw materials and using the resulting dopant. It was determined that the alloy with the O/C ratio in the charge in the range of 1.09–1.78 had the γ-Fe and Fe3C phases with alloying elements as substitutional atoms. At O/C=1.78, the phase composition predominantly consisted of γ-Fe with a weak manifestation of Fe3C. A phased O/C change in charge of 1.33 and 1.09 resulted in an increase in the emergence of Fe3C on diffractograms. The microstructure of the chrome-nickel-containing corrosion-resistant steels scale mixture is disordered with the presence of particles of different sizes and shapes. The content of the alloying elements Ni and Cr was 7.65 % wt. and 14.26 % wt., respectively, at the oxygen content at the level of 29.70 % wt. The microstructure of the doped alloy with a different O/C ratio in the charge had a clear manifestation of several phases, characterized by differences in the content of the main alloying elements. The Ni content in the studied areas of different phases varied within 1.41–20.90 % wt., Cr ‒ 1.27–32.90 % wt. According to research, the most acceptable O/C ratio in the charge is 1.78. In this case, reduction was achieved with predominance in the phase composition of γ-Fe with a relatively weak manifestation of residual carbon as the carbide component. In other words, we have determined the indicators for the processing of chromium-nickel-containing industrial wastes and the production of a doped smelting product with a relatively low carbon content. This expands the possibilities of resource saving using the obtained alloy with the replacement of a certain proportion of standard alloying materials in the smelting of carbon-limited steel grades

    Revealing New Patterns in Resource­saving Processing of Chromium­containing Ore Raw Materials by Solid­phase Reduction

    Full text link
    The physical and chemical properties of products from the carbon-thermal reduction of oxide chromo-containing ore raw materials have been investigated. This is necessary to determine the parameters that reduce the loss of Cr in the processing of ore materials and the use of metallized chromium doping additives in steelmaking. It has been determined that the increase in processing temperature from 1,250 K to 1,450 K led to an increase in the manifestation of Cr23C6 and (Cr, Fe)7C3. In this case, the diffraction maxima of Cr2O3 corresponded to the trend of weakening and, having been treated at 1,450 K, had a residual character. Cr3C2 on the diffractograms was only evident after processing at 1,250 K. The phase of the metallic Cr was traced in the samples after processing at 1,350 K and 1,450 K with the increased intensity of manifestation when the heating temperature rose. It has been determined that the microstructure of reduction products is heterogeneous with the presence of particles of different sizes and chemical compositions. The increase in the reduction temperature from 1,250 K to 1,350 K and 1,450 K and the development of reduction processes were accompanied by particle sintering with the formation of a spongy microstructure. We have detected regions that characterized inclusions and the phases where Cr content amounted to 65.10 % by weight, Fe ‒ to 16.13 % by weight. Some local areas with particles with a relatively high content of ore impurities and carbon have also been found. It follows from the results of our study that the most acceptable temperature for reduction is 1,450 K. In this case, the reduction is ensured with a predominance in the phase composition of the metal Cr and carbides (Cr, Fe)7C3 and Cr23C6 relative to the oxide component of Cr2O3. In this case, the lower residual carbon content was due to the higher efficiency of the reducer compared to other temperature regimes.The spongy microstructure allows for a Faster dissolution compared to standard ferroalloys, thereby reducing the duration of smeltin

    Newborn Sequencing in Genomic Medicine and Public Health.

    No full text
    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening

    Newborn Sequencing in Genomic Medicine and Public Health.

    Get PDF
    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening

    Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia

    No full text
    The North American terrapin, the red-eared slider, has globally recognized invasive status. We built a new extensive database using our own original and literature data on the ecology of this reptile, representing information on 1477 water bodies throughout Eurasia over the last 50 years. The analysis reveals regions of earliest introductions and long-term spatio-temporal dynamics of the expansion covering now 68 Eurasian countries, including eight countries reported here for the first time. We established also long-term trends in terms of numbers of terrapins per aquatic site, habitat occupation, and reproduction success. Our investigation has revealed differences in the ecology of the red-eared slider in different parts of Eurasia. The most prominent expression of diverse signs of invasion success (higher portion of inhabited natural water bodies, higher number of individuals per water body, successful overwintering, occurrence of juvenile individuals, successful reproduction, and establishment of populations) are typical for Europe, West Asia and East Asia and tend to be restricted to coastal regions and islands. Reproduction records coincide well with the predicted potential range based on climatic requirements but records of successful wintering have a wider distribution. This invader provides an excellent and possibly unique (among animals) example of wide alien distribution, without the establishment of reproducing populations, but through the recruitment of new individuals to rising pseudopopulations due to additional releases. Therefore, alongside the potential reproduction range, a cost-effective strategy for population control must take in account the geographical area of successful wintering. Graphical abstrac
    corecore