63 research outputs found

    Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor

    Get PDF
    The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux

    Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer

    Get PDF
    Heating of the ionosphere by high-frequency (HF), ordinary (O) mode electromagnetic waves can excite magnetic field aligned density striations (FAS), associated with upper and lower hybrid turbulence and electron heating. We have used Vlasov simulations in one spatial and two velocity dimensions to study the induced turbulence in the presence of striations when the O-mode pump is mode converted to large amplitude upper hybrid oscillations trapped in a striation. Parametric processes give rise to upper and lower hybrid turbulence, as well as to large amplitude, short wavelength electron Bernstein waves. The latter excite stochastic electron heating when their amplitudes exceed a threshold for stochasticity, leading to a rapid increase of the electron temperature by several thousands of Kelvin. The results have relevance for high latitude heating experiments

    Spectrum of red sprites

    Get PDF
    Abstract A synthetic spectrum of red sprites due to electron energization by the electric _eld from lightning is presented is used to calculate the electron energization at altitudes between 59Ð89 km by lightning generated _elds with fre! quency v smaller than the electron cyclotron frequency V e and the electronÐneutral collisional frequency n 9 [ It computes kinetically the modi_cation of the electron dis! tribution function by the _eld and the excitation of the molecular electronic levels by the energized electrons[ Radiative de!excitation of the excited molecules pro! duced optical~ashes that super_cially resemble those observed during auroras[ However\ unlike auroras which last for hours and in which even forbidden transitions needs to be considered\ red sprites have durations of only milliseconds\ so that only N 1 transitions less than a millisecond\ excited by direct electron impact or through cascades\ need to be retained[ Finally the emission spec! trum at ground or airplane level is computed by including the atmospheric attenuation[ 1[0[ Electron distribution function The electron distribution function in the presence of an electric _eld is strongly non!Maxwellian requiring a kinetic treatment of the problem[ This provides the value of the electronÐneutral collisional frequency n e n e "z\ =E=#\ and the excitation rates of the di}erent electronic levels by electron impact[ An existing Fokker

    Gamma ray flashes by plasma effects in the middle atmosphere

    Get PDF
    In this paper a novel mechanism is identified for the generation of gamma ray flashes observed on the Compton Gamma Ray Observatory satellite. During typical cloud to ground lightning flashes, the electromagnetic pulse can create a self-focused whistler wave channel or duct to guide 10-10/cm of ~1 MeV electrons (formed by static stratified electric field in clouds at 20 km), to a height of about 30 km where these electrons can create the gamma ray flash by bremsstrahlung. This scenario combines the various observational features of lightning-generated electromagnetic pulses and low altitude energetic electrons to provide a viable nonlinear transport mechanism of energetic electrons to the desired altitude of 30 km for conversion into gamma ray flashes

    Comparison of Image Restoration Methods for Lunar Epithermal Neutron Emission Mapping

    Get PDF
    Orbital measurements of neutrons by the Lunar Exploring Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter are being used to quantify the spatial distribution of near surface hydrogen (H). Inferred H concentration maps have low signal-to-noise (SN) and image restoration (IR) techniques are being studied to enhance results. A single-blind. two-phase study is described in which four teams of researchers independently developed image restoration techniques optimized for LEND data. Synthetic lunar epithermal neutron emission maps were derived from LEND simulations. These data were used as ground truth to determine the relative quantitative performance of the IR methods vs. a default denoising (smoothing) technique. We review and used factors influencing orbital remote sensing of neutrons emitted from the lunar surface to develop a database of synthetic "true" maps for performance evaluation. A prior independent training phase was implemented for each technique to assure methods were optimized before the blind trial. Method performance was determined using several regional root-mean-square error metrics specific to epithermal signals of interest. Results indicate unbiased IR methods realize only small signal gains in most of the tested metrics. This suggests other physically based modeling assumptions are required to produce appreciable signal gains in similar low SN IR applications

    Simulations of the generation of energetic electrons and the formation of descending artificial plasma layers during HF-heating at Arecibo

    Get PDF
    HF-induced Descending Artificial Plasma Layers (DAPLs) are artificially ionized plasma layers with plasma density in excess of that of the F2-peak. They were discovered during HF heating experiments at HAARP where they descended up to 70 km from the initial O mode wave reflection height. The DAPLs were attributed to the ionization of the neutral gas by high-energy electrons accelerated by the artificial ionospheric turbulence. Recently, DAPL formation was reported during the HF-heating experiment at Arecibo [Bernhardt et al., 2017]. This result was unexpected since Arecibo has the Effective Radiated Power (ERP) 4 – 5 times lower than that at HAARP, and since the experiment at Arecibo also has an unfavorable geometry, where the HF beam is directed vertically while the inclination of the geomagnetic field is 43.5o, allowing the fast electrons to escape the volume where their interaction with the artificial plasma turbulence occurs. However, the presence of photoelectrons due to the UV radiation from the Sun at the low latitude of Arecibo could magnify the flux of hot electrons. A model of artificial plasma layers created by the Arecibo HF facility is presented. It shows that Langmuir turbulence due to the HF heating can accelerate part of the ambient photoelectrons to energies above the ionization threshold of the neutral gas, leading to the formation of DAPLs. The present model results are in quantitative agreement with the experiments of Bernhardt et al. [2017]
    corecore