272 research outputs found

    Determination of Pesticide Residues in IV Range Artichoke (Cynara cardunculus L.) and Its Industrial Wastes

    Get PDF
    Fourth-range products are those types of fresh fruit and vegetables that are ready for raw consumption or after cooking, and belong to organic or integrated cultivations. These products are subject to mild post-harvesting processing procedures (selection, sorting, husking, cutting, and washing), and are afterwards packaged in packets or closed food plates, with an average shelf life of 5–10 days. Artichokes are stripped of the leaves, stems and outer bracts, and the remaining heads are washed with acidifying solutions. The A LC-MS/MS analytical method was developed and validated following SANTE guidelines for the detection of 220 pesticides. This work evaluated the distribution of pesticide residues among the fraction of artichokes obtained during the industrial processing, and the residues of their wastes left on the field were also investigated. The results showed quantifiable residues of one herbicide (pendimethalin) and four fungicides (azoxystrobin, propyzamide, tebuconazole, and pyraclostrobin). Pendimethalin was found in all samples, with the higher values in leaves 0.046 ± 8.2 mg/kg and in field waste 0.30 ± 6.7 mg/kg. Azoxystrobin was the most concentrated in the outer bracts (0.18 ± 2.9 mg/kg). The outer bracts showed the highest number of residues. The industrial waste showed a significant decrease in the number of residues and their concentration

    The High Time Resolution Universe Survey - V: Single-pulse energetics and modulation properties of 315 pulsars

    Get PDF
    We report on the pulse-to-pulse energy distributions and phase-resolved modulation properties for catalogued pulsars in the southern High Time Resolution Universe intermediate-latitude survey. We selected the 315 pulsars detected in a single-pulse search of this survey, allowing a large sample unbiased regarding any rotational parameters of neutron stars. We found that the energy distribution of many pulsars is well-described by a log-normal distribution, with few deviating from a small range in log-normal scale and location parameters. Some pulsars exhibited multiple energy states corresponding to mode changes, and implying that some observed "nulling" may actually be a mode-change effect. PSRJ1900-2600 was found to emit weakly in its previously-identified "null" state. We found evidence for another state-change effect in two pulsars, which show bimodality in their nulling time scales; that is, they switch between a continuous-emission state and a single-pulse-emitting state. Large modulation occurs in many pulsars across the full integrated profile, with increased sporadic bursts at leading and trailing sub-beam edges. Some of these high-energy outbursts may indicate the presence of "giant pulse" phenomena. We found no correlation with modulation and pulsar period, age, or other parameters. Finally, the deviation of integrated pulse energy from its average value was generally quite small, despite the significant phase-resolved modulation in some pulsars; we interpret this as tenuous evidence of energy regulation between distinct pulsar sub-beams.Comment: Before full MNRAS publication, supplementary material is available temporarily at http://dl.dropbox.com/u/22076931/supplementary_material.pd

    When data sharing gets close to 100%. What human paleogenetics can teach the open science movement

    Get PDF
    This study analyzes data sharing regarding mitochondrial, Y chromosomal and autosomal polymorphisms in a total of 162 papers on ancient human DNA published between 1988 and 2013. The estimated sharing rate was not far from totality (97.6% ± 2.1%) and substantially higher than observed in other fields of genetic research (evolutionary, medical and forensic genetics). Both a questionnaire-based survey and the examination of Journals’ editorial policies suggest that this high sharing rate cannot be simply explained by the need to comply with stakeholders requests. Most data were made available through body text, but the use of primary databases increased in coincidence with the introduction of complete mitochondrial and next-generation sequencing methods. Our study highlights three important aspects. First, our results imply that researchers’ awareness of the importance of openness and transparency for scientific progress may complement stakeholders’ policies in achieving very high sharing rates. Second, widespread data sharing does not necessarily coincide with a prevalent use of practices which maximize data findability, accessibility, useability and preservation. A detailed look at the different ways in which data are released can be very useful to detect failures to adopt the best sharing modalities and understand how to correct them. Third and finally, the case of human paleogenetics tells us that a widespread awareness of the importance of Open Science may be important to build reliable scientific practices even in the presence of complex experimental challenges

    Transformation of a Star into a Planet in a Millisecond Pulsar Binary

    Full text link
    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7 ms pulsar, was detected in a recent survey with the Parkes 64m radio telescope. We show that it is in a binary system with an orbital period of 2.2 h. Its companion's mass is near that of Jupiter, but its minimum density of 23 g cm3^{-3} suggests that it may be an ultra-low mass carbon white dwarf. This system may thus have once been an Ultra Compact Low-Mass X-ray Binary, where the companion narrowly avoided complete destruction.Comment: 16 pages, 3 figures. Science Express, in pres

    Dual Axis Solar Tracking System for a Parabolic Dish CPU Water Heater

    Full text link
    The solar parabolic dish water heater is highly efficient but has limited hours of work only when sunlight is perpendicular to its surface. Therefore, this work aims to continue the work of the solar parabolic dish in the daytime using a dual tracking system, depending on the geographic location of the system (longitude and latitude angles) and using the C # programming language. To verify the effect of the dual-axis solar tracking system, the current study considered two types of solar parabolic dishes, the first was fixed, and the second was a rotating dish (by the dual tracking system). It was observed that the water temperature at the outlet of the tracking type solar water heater is 22% higher than that for the fixed dish type; this means that the proposed system has improved the temperature of water in the heat exchanger. Therefore, the highest water temperature value of about 51.4C was at the outlet of the heat exchanger for the tracking type at 1:00 pm, while the temperature recorded for the fixed type was about 46.1C. The highest energy gained from the solar heating system was at 1:00 pm for both types, which was about 76.9 W from the tracking type and 54.7 W from the fixed type. It was also observed that in the fixed dish type, most energy losses occurred during the daytime, while for the tracer of the dish type, useful energy was gained during most of the sunny working hours depending on the solar radiation intensity. © 2021 Institute of Physics Publishing. All rights reserved

    Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)

    Full text link
    Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE) CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which backbone twists take place with weakened pi-stackings. Two-dimensional exchange 2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is due to the one-dimensional diffusion-like motion of backbone conformational modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was approximately 10^7 times larger than that estimated by 2DEX NMR measurements. These results suggest that there exists anomalous dispersion of modulation waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is responsible for the behavior of proton longitudinal relaxation time. On the other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of methyl groups that is associated with backbone twists. From proton T_1 and T_2 measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol, respectively. These were in agreement with 3.0 kcal/mol determined by Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed chemical shielding calculation of the methyl-carbon in order to understand chemical shift tensor behavior, leading to the fact that a quasi-ordered phase coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.

    The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries

    Full text link
    We have embarked on a survey for pulsars and fast transients using the 13-beam Multibeam receiver on the Parkes radio telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 us. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of eight improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ~30% of the mid-latitude survey complete, we have re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which are millisecond pulsars. The newly discovered millisecond pulsars tend to have larger dispersion measures than those discovered in previous surveys, as expected from the improved time and frequency resolution of our instrument.Comment: Updated author list. 10 pages, 7 figures. For publication in MNRA

    The High Time Resolution Universe Survey II: Discovery of 5 Millisecond Pulsars

    Full text link
    We present the discovery of 5 millisecond pulsars found in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods from ~2.3 to ~7.5 ms, and all are in binary systems with orbital periods ranging from ~0.3 to ~150 d. In four of these systems, the most likely companion is a white dwarf, with minimum masses of ~0.2 Solar Masses. The other pulsar, J1731-1847, has a very low mass companion and exhibits eclipses, and is thus a member of the "black widow" class of pulsar binaries. These eclipses have been observed in bands centred near frequencies of 700, 1400 and 3000 MHz, from which measurements have been made of the electron density in the eclipse region. These measurements have been used to examine some possible eclipse mechanisms. The eclipse and other properties of this source are used to perform a comparison with the other known eclipsing and "black widow" pulsars. These new discoveries occupy a short-period and high-dispersion measure (DM) region of parameter space, which we demonstrate is a direct consequence of the high time and frequency resolution of the HTRU survey. The large implied distances to our new discoveries makes observation of their companions unlikely with both current optical telescopes and the Fermi Gamma-ray Space Telescope. The extremely circular orbits make any advance of periastron measurements highly unlikely. No relativistic Shapiro delays are obvious in any of the systems, although the low flux densities would make their detection difficult unless the orbits were fortuitously edge-on.Comment: 11 pages, 5 figures, 4 tables, for publication in MNRA

    The High Time Resolution Universe Survey VI: An Artificial Neural Network and Timing of 75 Pulsars

    Get PDF
    We present 75 pulsars discovered in the mid-latitude portion of the High Time Resolution Universe survey, 54 of which have full timing solutions. All the pulsars have spin periods greater than 100 ms, and none of those with timing solutions are in binaries. Two display particularly interesting behaviour; PSR J1054-5944 is found to be an intermittent pulsar, and PSR J1809-0119 has glitched twice since its discovery. In the second half of the paper we discuss the development and application of an artificial neural network in the data-processing pipeline for the survey. We discuss the tests that were used to generate scores and find that our neural network was able to reject over 99% of the candidates produced in the data processing, and able to blindly detect 85% of pulsars. We suggest that improvements to the accuracy should be possible if further care is taken when training an artificial neural network; for example ensuring that a representative sample of the pulsar population is used during the training process, or the use of different artificial neural networks for the detection of different types of pulsars.Comment: 15 pages, 8 figure
    corecore