235 research outputs found

    Time-resolved photoluminescence of n-doped SrTiO_3

    Full text link
    Following the recent surge of interest in n-doped strontium titanate as a possible blue light emitter, a time-resolved photoluminescence analysis was performed on nominally pure, Nb-doped and oxygen-deficient single-crystal SrTiO3 samples. The doping-effects on both the electronic states involved in the transition and the decay mechanism are respectively analyzed by comparing the spectral and dynamic features and the yields of the emission. Our time-resolved analysis, besides shedding some light on the basic recombination mechanisms acting in these materials, sets the intrinsic bandwidth limit of the proposed blue light emitting optoelectronic devices made of Ti-based perovskites heterostructures in the GHz range

    The ontogeny of continuous quantity discrimination in zebrafish larvae (Danio rerio).

    Get PDF
    Several studies have investigated the ontogeny of the capacity to discriminate between discrete numerical information in human and non-human animals. Contrarily, less attention has been devoted to the development of the capacity to discriminate continuous quantities. Recently, we set up a fast procedure for screening continuous quantity abilities in adult individuals of an animal model in neurodevelopmental research, the zebrafish. Two different sized holes are presented in a wall that divides the home tank in two halves and the spontaneous preference of fish for passing through the larger hole is exploited to measure their discrimination ability. We tested zebrafish larvae in the first, second and third week of life varying the relative size of the smaller circle (0.60, 0.75, 0.86, 0.91 area ratio). We found that the number of passages increased across the age. The capacity to discriminate the larger hole decreased as the ratio between the areas increased. No difference in accuracy was found as a function of age. The accuracy of larval zebrafish almost overlaps that found in adults in a previous study, suggesting a limited role of maturation and experience on the ability to estimate areas in this species

    Brain and Behavioral Asymmetry: A Lesson From Fish.

    Get PDF
    It is widely acknowledged that the left and right hemispheres of human brains display both anatomical and functional asymmetries. For more than a century, brain and behavioral lateralization have been considered a uniquely human feature linked to language and handedness. However, over the past decades this idea has been challenged by an increasing number of studies describing structural asymmetries and lateralized behaviors in non-human species extending from primates to fish. Evidence suggesting that a similar pattern of brain lateralization occurs in all vertebrates, humans included, has allowed the emergence of different model systems to investigate the development of brain asymmetries and their impact on behavior. Among animal models, fish have contributed much to the research on lateralization as several fish species exhibit lateralized behaviors. For instance, behavioral studies have shown that the advantages of having an asymmetric brain, such as the ability of simultaneously processing different information and perform parallel tasks compensate the potential costs associated with poor integration of information between the two hemispheres thus helping to better understand the possible evolutionary significance of lateralization. However, these studies inferred how the two sides of the brains are differentially specialized by measuring the differences in the behavioral responses but did not allow to directly investigate the relation between anatomical and functional asymmetries. With respect to this issue, in recent years zebrafish has become a powerful model to address lateralization at different level of complexity, from genes to neural circuitry and behavior. The possibility of combining genetic manipulation of brain asymmetries with cutting-edge in vivo imaging technique and behavioral tests makes the zebrafish a valuable model to investigate the phylogeny and ontogeny of brain lateralization and its relevance for normal brain function and behavior

    Size discrimination in adult zebrafish (Danio rerio): Normative data and individual variation.

    Get PDF
    In humans, aging and neurodegenerative diseases have been found to be associated with impairment in both mathematical abilities and estimation of continuous quantities such as size, weight or distance. Zebrafish (Danio rerio) is rapidly becoming a model for human aging and brain disorders but we currently lack any instrument for rapid assessment of quantity estimation abilities in this species. Here we developed a simple method based on spontaneous preference of zebrafish for using the larger available hole to pass an obstacle. We collected a large amount of data from small groups of zebrafish moving between compartments of their tank and we used these normative data to compare the performance of individually tested fish. Zebrafish significantly discriminated size ratios from 0.60 to 0.91 with their performance decreasing while increasing the size ratio between the smaller and the larger hole presented. On average, individually tested fish showed the same performance, but a large inter-individual variability was observed. Test-retest analyses revealed a good reliability of this test, with 0.60 and 0.75 ratios being the most informative. Experience did not affect individual performance, suggesting the suitability of this test to measure the longitudinal changes and the effects of pharmacological treatments on cognitive abilities

    Charge density waves enhance the electronic noise of manganites

    Get PDF
    The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin films in the temperature range from room temperature to 160 K are reported. It is shown that both the broadband 1/f noise properties and the dependence of resistance on electric field are consistent with the idea of a collective electrical transport, as in the classical model of sliding charge density waves. On the other hand, the observations cannot be reconciled with standard models of charge ordering and charge melting. Methodologically, it is proposed to consider noise-spectra analysis as a unique tool for the identification of the transport mechanism in such highly correlated systems. On the basis of the results, the electrical transport is envisaged as one of the most effective ways to understand the nature of the insulating, charge-modulated ground states in manganites.Comment: 6 two-column pages, 5 figure

    Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: evidence from optical second harmonic generation

    Full text link
    The so-called "polar catastrophe", a sudden electronic reconstruction taking place to compensate for the interfacial ionic polar discontinuity, is currently considered as a likely factor to explain the surprising conductivity of the interface between the insulators LaAlO3 and SrTiO3. We applied optical second harmonic generation, a technique that a priori can detect both mobile and localized interfacial electrons, to investigating the electronic polar reconstructions taking place at the interface. As the LaAlO3 film thickness is increased, we identify two abrupt electronic rearrangements: the first takes place at a thickness of 3 unit cells, in the insulating state; the second occurs at a thickness of 4-6 unit cells, i.e., just above the threshold for which the samples become conducting. Two possible physical scenarios behind these observations are proposed. The first is based on an electronic transfer into localized electronic states at the interface that acts as a precursor of the conductivity onset. In the second scenario, the signal variations are attributed to the strong ionic relaxations taking place in the LaAlO3 layer

    Quantitative abilities in a reptile (Podarcis sicula)

    Get PDF
    The ability to identify the largest amount of prey available is fundamental for optimizing foraging behaviour in several species. To date, this cognitive skill has been observed in all vertebrate groups except reptiles. In this study we investigated the spontaneous ability of ruin lizards to select the larger amount of food items. In Experiment 1, lizards proved able to select the larger food item when presented with two alternatives differing in size (0.25, 0.50, 0.67 and 0.75 ratio). In Experiment 2 lizards presented with two groups of food items (1 versus 4, 2 versus 4, 2 versus 3 and 3 versus 4 items) were unable to select the larger group in any contrast. The lack of discrimination in the presence ofmultiple items represents an exception in numerical cognition studies, raising the question as to whether reptiles' quantitative abilities are different from those of other vertebrate groups

    Effect of Housing Quality on the Mental Health of University Students during the COVID-19 Lockdown

    Get PDF
    COVID-19 outbreak imposed rapid and severe public policies that consistently impacted the lifestyle habits and mental health of the general population. Despite vaccination, lockdown restrictions are still considered as potential measures to contrast COVID-19 variants spread in several countries. Recent studies have highlighted the impacts of lockdowns on the population\u2019s mental health; however, the role of the indoor housing environment where people spent most of their time has rarely been considered. Data from 8177 undergraduate and graduate students were collected in a large, cross-sectional, web-based survey, submitted to a university in Northern Italy during the first lockdown period from 1 April to 1 May 2020. Logistic regression analysis showed significant associations between moderate and severe depression symptomatology (PHQ-9 scores 65 15), and houses with both poor indoor quality and small dimensions (OR = 4.132), either medium dimensions (OR = 3.249) or big dimensions (OR = 3.522). It was also found that, regardless of housing size, poor indoor quality is significantly associated with moderate\u2013severe depressive symptomatology. Further studies are encouraged to explore the long-term impact of built environment parameter modifications on mental health, and therefore support housing and public health policies

    Probing charge transfer during metal-insulator transitions in graphene-LaAlO3/SrTiO3 systems

    Get PDF
    Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather points to a localization of interfacial carriers in the oxide structure.Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather p..
    • …
    corecore