11 research outputs found

    Event Identification as a Decision Process with Non-linear Representation of Text

    Full text link
    We propose scale-free Identifier Network(sfIN), a novel model for event identification in documents. In general, sfIN first encodes a document into multi-scale memory stacks, then extracts special events via conducting multi-scale actions, which can be considered as a special type of sequence labelling. The design of large scale actions makes it more efficient processing a long document. The whole model is trained with both supervised learning and reinforcement learning.Comment: 8 pages, 8 figure

    Maximising learning dialogues between workplace mentors and students undertaking professional field-based experiences

    No full text
    Field‐based experience is an integral component of many pre-service professional preparation programmes. In these practicum placements, students are paired with a mentor who is usually an experienced practitioner. While placements are regarded as a highly significant contributor to the overall programme, research suggests that student experience and the resultant learning can be varied. Sanders’ 2008 doctoral research focused on the use of intentional interventions within practicum experiences in initial primary teacher training as a means of enriching learning dialogue, which is when the conversation between a supervisor/mentor and learner is characterised by genuine professional co‐enquiry. This study takes that work and extends it into degree programmes preparing students for early childhood education and for counselling

    Mov10 suppresses retroelements and regulates neuronal development and function in the developing brain

    No full text
    Abstract Background Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. Results Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. Conclusions Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer’s disease

    Single-Cell and Subcellular Analysis Using Ultrahigh Resolution 21 T MALDI FTICR Mass Spectrometry

    No full text
    The mammalian brain contains ∼20,000 distinct lipid species that contribute to its structural organization and function. The lipid profiles of cells change in response to a variety of cellular signals and environmental conditions that result in modulation of cell function through alteration of phenotype. The limited sample material combined with the vast chemical diversity of lipids makes comprehensive lipid profiling of individual cells challenging. Here, we leverage the resolving power of a 21 T Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer for chemical characterization of individual hippocampal cells at ultrahigh mass resolution. The accuracy of the acquired data allowed differentiation of freshly isolated and cultured hippocampal cell populations, as well as finding differences in lipids between the soma and neuronal processes of the same cell. Differences in lipids include TG 42:2 observed solely in the cell bodies and SM 34:1;O2 found only in the cellular processes. The work represents the first mammalian single cells analyzed at ultrahigh resolution and is an advance in the performance of mass spectrometry (MS) for single-cell research
    corecore