15,573 research outputs found

    In-use Energy Performance Study Of Automated Smart Homes

    Get PDF
    Domestic energy demand has been high on the carbon reduction agenda for some time. Today new homes are being designed following the “fabric first” principle which is reducing heat demand, but it is shifting the design challenge to ventilation. Further energy reductions and comfort improvements are needed. It is frequently proposed that automated control systems can achieve this. However, the technologies involved are currently considered expensive and complicated. There is little published evidence of how these types of systems perform in use, which leads to scepticism. This research study aims to test the hypothesis that automated demand-controlled heating and ventilation can provide a good indoor environment while reducing energy consumption in “real-life” homes. A year-long case study was conducted using six occupied, neighbouring dwellings installed with a low-cost automated building control system. The energy consumption figures recorded were compared to the values predicted by the Standard Assessment Procedure and by a Dynamic Simulation Model, and compared to Passivhaus standard. Significant savings have been identified. The results of this study show that an automated control system can lead to very low energy, and hence low carbon homes at a price-point that would incentivise widespread role out. This means that such systems have the potential to make a considerable contribution to reducing the carbon footprint of housing stock, and hence to meeting carbon reduction targets

    Square Patterns and Quasi-patterns in Weakly Damped Faraday Waves

    Full text link
    Pattern formation in parametric surface waves is studied in the limit of weak viscous dissipation. A set of quasi-potential equations (QPEs) is introduced that admits a closed representation in terms of surface variables alone. A multiscale expansion of the QPEs reveals the importance of triad resonant interactions, and the saturating effect of the driving force leading to a gradient amplitude equation. Minimization of the associated Lyapunov function yields standing wave patterns of square symmetry for capillary waves, and hexagonal patterns and a sequence of quasi-patterns for mixed capillary-gravity waves. Numerical integration of the QPEs reveals a quasi-pattern of eight-fold symmetry in the range of parameters predicted by the multiscale expansion.Comment: RevTeX, 11 pages, 8 figure

    Optically controlled grippers for manipulating micron-sized particles

    Get PDF
    We report the development of a joystick controlled gripper for the real-time manipulation of micron-sized objects, driven using holographic optical tweezers (HOTs). The gripper consists of an arrangement of four silica beads, located in optical traps, which can be positioned and scaled in order to trap an object indirectly. The joystick can be used to grasp, move (lateral or axial), and change the orientation of the target object. The ability to trap objects indirectly allows us to demonstrate the manipulation of a strongly scattering micron-sized metallic particle

    Plasma deposition of constrained layer damping coatings

    No full text
    Plasma techniques are used to generate constrained layer damping (CLD) coatings on metallic substrates. The process involves the deposition of relatively thick, hard ceramic layers on to soft polymeric damping materials while maintaining the integrity of both layers. Reactive plasma sputter-deposition from an aluminium alloy target is used to deposit alumina layers, with Young's modulus in the range 77-220GPa and thickness up to 335 μ, on top of a silicone film. This methodology is also used to deposit a 40 μ alumina layer on a conventional viscoelastic damping film to produce an integral damping coating. Plasma CLD systems are shown to give at least 50 per cent more damping than equivalent metal-foil-based treatments. Numerical methods for rapid prediction of the performance of such coatings are discussed and validated by comparison with experimental results

    Amplitude equations and pattern selection in Faraday waves

    Full text link
    We present a systematic nonlinear theory of pattern selection for parametric surface waves (Faraday waves), not restricted to fluids of low viscosity. A standing wave amplitude equation is derived from the Navier-Stokes equations that is of gradient form. The associated Lyapunov function is calculated for different regular patterns to determine the selected pattern near threshold. For fluids of large viscosity, the selected wave pattern consists of parallel stripes. At lower viscosity, patterns of square symmetry are obtained in the capillary regime (large frequencies). At lower frequencies (the mixed gravity-capillary regime), a sequence of six-fold (hexagonal), eight-fold, ... patterns are predicted. The regions of stability of the various patterns are in quantitative agreement with recent experiments conducted in large aspect ratio systems.Comment: 12 pages, 1 figure, Revte

    Transport of flexible chiral objects in a uniform shear flow

    Get PDF
    The transport of slightly deformable chiral objects in a uniform shear flow is investigated. Depending on the equilibrium configuration one finds up to four different asymptotic states that can be distinguished by a lateral drift velocity of their center of mass, a rotational motion about the center of mass and deformations of the object. These deformations influence the magnitudes of the principal axes of the second moment tensor of the considered object and also modify a scalar index characterizing its chirality. Moreover, the deformations induced by the shear flow are essential for the phenomenon of dynamical symmetry breaking: Objects that are achiral under equilibrium conditions may dynamically acquire chirality and consequently experience a drift in the lateral direction.Comment: 25 pages, 16 figure

    Measuring the attack surfaces of two FTP daemons

    Full text link
    Software consumers often need to choose between different software that provide the same functionality. Today, se-curity is a quality that many consumers, especially system administrators, care about and will use in choosing one soft-ware system over another. An attack surface metric is a security metric for comparing the relative security of simi-lar software systems [8]. The measure of a system’s attack surface is an indicator of the system’s security: given two systems, we compare their attack surface measurements to decide whether one is more secure than another along each of the following three dimensions: methods, channels, and data. In this paper, we use the attack surface metric to mea-sure the attack surfaces of two open source FTP daemons: ProFTPD 1.2.10 and Wu-FTPD 2.6.2. Our measurements show that ProFTPD is more secure along the method dimen-sion, ProFTPD is as secure as Wu-FTPD along the channel dimension, and Wu-FTPD is more secure along the data di-mension. We also demonstrate how software consumers can use the attack surface metric in making a choice between the two FTP daemons

    The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in adipocytes

    Get PDF
    The purpose of this study was to determine whether pyruvate dehydrogenase kinase (PDK)4 was expressed in adipocytes and whether PDK4 expression was hormonally regulated in fat cells. Both Northern blot and Western blot analyses were conducted on samples isolated from 3T3-L1 adipocytes after various treatments with prolactin (PRL), growth hormone (GH), and/or insulin. Transfection of PDK4 promoter reporter constructs was performed. In addition, glucose uptake measurements were conducted. Our studies demonstrate that PRL and porcine GH can induce the expression of PDK4 in 3T3-L1 adipocytes. Our studies also show that insulin pretreatment can attenuate the ability of these hormones to induce PDK4 mRNA expression. In addition, we identified a hormone-responsive region in the murine PDK4 promoter and characterized a STAT5 binding site in this region that mediates the PRL (sheep) and GH (porcine) induction in PDK4 expression in 3T3-L1 adipocytes. PDK4 is a STAT5A target gene. PRL is a potent inducer of PDK4 protein levels, results in an inhibition of insulin-stimulated glucose transport in fat cells, and likely contributes to PRL-induced insulin resistance. © 2007 by the American Diabetes Association

    Resiliency Factors Related to Substance Use/Resistance: Perceptions of Native Adolescents of the Southwest

    Get PDF
    This exploratory, qualitative study examined risk and protective factors influencing drug and alcohol use and/or resistance of Native youth in the Southwest. Thirty-two Native middle school students participated in 10 focus groups that explored their experiences with alcohol and drugs in their school and reservation communities. The findings indicate a complex interaction of both risk and protective factors related to substance use. Respondents\u27 cousins and siblings, in particular, played a key role in their decisions to use or resist drugs. Implications for social work practice are discussed
    corecore