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Quasn-ldentltles, Mal’cev condltlons and congruence regulanty

B. A. DAVEY, K R MILES andV J. SCHUMANN

Dedicated to the memory of Andrds P. Huhn _

This work grew out of our desire to present a uniform approach to the various
forms of congruence regularity which have been studied in the l_itérature. We were
particularly interested in the result of GRATZER [8] that if every algebra in a variety
¥ contains an element a such that [@)a=[da]B implies o=f for all congruences
o, B on A, then the element ¢ may be chosen from any subalgebra of 4. We also
wished to study the concept of subregularity introduced by TiMm [15]: an algebra
A is subregular if for all subalgebras B=4 and all congruences a, § on 4 we have
o= whenever [bla=[b]f for all b€B. In particular we wanted a characteriza-
tion of subregularity via simple identities and quasi-identities similar to those for
regularity due to WILLE [16] and CSAKANY [2]. These two toplcs turned out to be
quite closely related (Theorem 2.3).

In the first section the various types of regularity are deﬁned and thelr local
properties are investigated. In particular, we give characterizations in terms of .
principal congruences similar to those for regularlty ‘and weak regularity give in
HasuiMOTO [12] and GRATZER [8] (Lemma 1.3). We also apply Gumm’s Shifting
Principle [9] to give local proofs of congruence modularity where possible (Theorem
1.4). _ ,
The global relationships between .the various forms of regularity are studied
in Section 2. The section begins with a general translation principle for converting
a Hashimoto-type principal-congruence property into a quasi-identity (Theorem 2. 1)
which is then applied to yield quasi-identity characterizations for each of the forms
of regularity (Theorems 2.2, 2.3, 2.4, 2.5).

The third section contains a general consideration of the relationships between
quasi-identities, identities, congruence modularity and n-permutability. Several ways
of translating quasi-identities into identities are given (Theorems 3.4, 3.5). We
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also describe a large class of quasi-identities which imply both congruence modu-
larity and n-permutability for some »n (Theorem 3.9).

In Section 4 we see that the results of Sections 2 and 3 may be combined to
yield identities characterizing each of the forms of regularity and show that, with
one exception, each implies congruence modularity and n-permutability for some n.

Our notation and terminology are fairly standard. Note in particular that the
lattice of congruences of an algebra A is denoted by Con A with least element 0,
the n-generated free algebra in a variety ¥ is denoted by F¥"(n) and by a constant
term we mean a nullary or constant unary term.

1. Definitions and local relationships. In this section we introduce various degrees
of regularity and study these at the local level. A Hashimoto-type principal-congru-
ence characterization is given for each and, where possible, a local proof of con-
gruence modularity is obtained via H. P, Gumm’s Shifting Principle. '

An algebra A is regular with respect to ay, ...,a,A if for all «, fcCon 4
we have

(&, edx = [alf) =2 = §

R: A4 is regular if it is regular with respect to a for each a€A.

R,: A is n-regular if there exist- ay, ..., a,€A such that 4 is regular with respect to
a, ..., q,.

SR: A is subregular if it is regular with respect to each of its subalgebras, that is,
for each B=A and all «, §¢Con A we have

(&, [bla=[bl) = o =B

SR,: A is n-subregular if for all B=A there exist by, ..., b,€B such that A is regular
with respect to by, ..., b,.

Note that 1-regularity is usually referred to as weak regularity. Some authors have
insisted that the elements g, ..., a, in the definition of n-regularity be constant
terms: if there are constant terms oy, ...,0, such that 4 is regular with respect to
01, ..., 0, then we shall say that A4 satisfies R(oy, ..., 0,). We say that a class ¥
of algebras is regular (respectively, subregular, etc.) if every algebra in ¥ is regular
(respectively, subregular, etc.).

In TimM [15] it is pointed out that the algebra (N;s), where s is the successor
function, is subregular and it is easily seen that it is not n-regular for any n€N.
The non-zero congruences on {N; s) are all of the form @ (m, k) for some m, keéN
where

xO(m,k)y © x=y<m or (x,y=m & x=y (modk)).
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Since @(m, k)=0(n, l<n=m and I|k, we have
Con (N; s) == 1®[N; =YX N; )]

Note that (N; s) is congruence-distributive.
The implications in the diagram below are trivial:

Ry —— R, —~...
t 1
R ~SR,—— SR, -...—~ SR
t t
R(oy) — R0y, 05) — ...

In the presence of a one-element subalgebra many of these relations collapse.

1.1. Lemma. (i) If A has a one-element subalgebra, then on A we have
SR—’RI.
(ii) If there is a constant term o suchthat {0}=A, then on A we have SR—~R(0).

The following characterizations using set inclusion rather than equality are
often useful. If «€¢Con 4 and B=A then ofB denotes the restriction of o to B
and [B]a denotes the union over b€B of the a-blocks [b]a.

1.2. Lemma. (i) A is regular if and only if -
- (Va€Ad)(Ve, BECon A)flale S [a]f = S B].
(i) A is n-regular if and only if
Qa, ..., a,cA) (Yo, BECon A) [(él[a,-]oz C [alf) = < B].
(iif) A is n-subregular if and only if
(VB = A)(3by, ..., b,€B)(Va, peCon 4) [(él[bi];cx Siblp)=a < Bl

(iv) The following are equivalent:

(a) A is subregular;

{b) (VB = A)(v, feCon A) [( &, [blx S [b]B) =« < B];

(©) (VB = A)(Va, BcCon A)[(x} B E ptB&[Blx = B) = a S B].

Proof. These proofs are trivial once we observe that [g]laC[a]f implies
[ala=[a](xA B)-

The version of subregularity given in 1.2 (iv) (c) has been useful in the study
of injectivity: see, DAVEY and KovAcs.[3].

We now give the Hashimoto-type principal-congruence characterizations of
the various forms of regularity. The subalgebra generated by a¢ A is denoted by (a).
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1.3. Lemma. (i) A is regular with respect to ay, ..., a,€ A if and only if for all
b, c€A there exist dy, ..., d;,,€A such that

O, =V 'V 0, dy.

i=1 j=1

(i) A=R o (VacA)(Vb, ccA)@dy, ..., dpcA) Ok, ) = V O(a,d)).
: j=1

(i) A=R, < (Qay, ..., a,c AV b, c€A)@dy, ..., dinc A)

O, )=V V 0(,dy.

i=1 j=1

(iv) AESR @ (Vacd)(Vb, c€A)(3ay, ..., a,£{a))(3d,, ..., d,€A)
O, )= V 0a, d).
A ‘ _ =t v
(V) AESR, > (Va€A) @y, ..., a,€@)(V b, c€A)@dyy, ..., din€ 4)

Ob,c)=V V 0(;, dij)-
) i=1j=1 - :
Proof. (ii) is due to Hasamorto [12] and GrRATZER [8]. As all proofs are similar,
we prove only (iv).
Assume that 4 is subregular. Let a, b, c€ 4 and let a be the smallest congru-
ence on A4 having [a1@(b,c) as a block for all a’€(a). Then for all a’c(a) we
have [a]a=[a]1O(b, c), whence a=0O(b,c) by subregularity. Thus

O(b, &) =V(0(a, d) | ’¢{a) & de[a’1O (b, ).

Since @ (b, ¢) is-compact, there exist .a;; ..., a,€{a) and d;€[a;]O (b, ¢) with -
0k, 9=V O, d). .
i=1

Conversely, suppose that the principal-congruence condition holds. Let B=4
and suppose that «, fcCon 4 satisfy [blaS[b]f for all bEB. Let acB and
b,c€A and let a;€(@)SB and d;€A4 be given by the principal-congruence con-
dition. Now suppose that b=c(e). Since O(q;, d)SO(b,c)Sa, we have
d€[a)aS[a]B for all i and hence a,=d;(f) for all i. Thus O, ¢)S B, whence
b=c(B). Consequently aSf. .

While the proof below of congruence modularity uses Gumm’s Shifting Prin-
ciple, it is closely related to the corresponding proof in BULMAN-FLEMING, DAY
and TAYLOR [1]. ‘
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1.4. Theorem. If every subaigebra of A® is subregular, then Con A is mo-
dular. ,

Proof. ABy Lemma 3.2':of Gumm [9] it suffices to pfove that if «, véConA_
and A=4? is reflexive and symmetric with e A=y=a, then whenever we have

A .
X0 nZ

Yy .
J; cdu

it follows that xyy. Let o, y and A be as stated and assume that the relations indi-
cated in the diagram hold.

Consider Xy and yXy as congruences on the subregular algebra A4: note
that yXy=aXy. Denote the diagonal of 4% by 4 and consider (a, a)€¢4. Let
(b, ©)€ A with (b, ¢) a Xy (a, a). Then

boa & cya & bAc = baNAc as y=u«a
‘ = byc as aNA=y
= bya as cya

= (b, 0} yXy (a,a).
Thus [(a, B]ayXy=[(a, A)]4xXy.
Hence B:=[A4],yX7y=[4],aXy and (yXyB=(aXy}IB. Consequently yXy=
=aXy on A as A is subregular. Since (x,2), (v, WA with (x,2) aXy (¥, u)
we have x y y, as required. (Note that the symmetry of A was not required.)

Similarly it can be proved that if S(4%)=R(oy, ..., 0,) then Con A is modular.
It follows trivially from Theorem 1.4 that if S(42)=SR, for some n, thén Con 4
is modular; it seems highly unlikely that a similar conclusion can be made about
R, since the elements with respect to which 4 is regular.cannot be forced into the
diagonal. '

2, Global relationships. In [2], CsAKANY characterized regularity for Varie'ties via
a quasi-identity: a variety ¥” is regular if and only if there are ternary terms pl, vees Pn
such that

VEx=y<~ iél pi(xyz) = z.
Much earlier, THURSTON [14] showed that ¥ is regular if and only if for all 4€¥,

all acCon 4 and all ac4 we have that [[a]a|=1 imp]ies a=0. We now give the
corresponding characterizations for our more general forms of regularity. Along
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the way we shall see that at the global level the various regularities come closer
together.

The following translation principle allows us to convert a Hashimoto-type
principal-congruence property directly into a quasi-identity.

2.1. Theorem. Let ¥ be a variety and Iet fi, g, r and s be n-ary terms.
Then the following are equivalent:

) ¥ (& A = ) ~ ) = ()3
(ii) for all A€¥ and all dcA4”

V O(fi@, 2:(@) 2 O(r(@), s(a);

(iii) the elements fi(%), g(X), r(¥) and s(X) of F¥ (n) satisfy
V 04, (%) 2 0, s(3).

Proof. (i)==(ii). Let A€¥" and d€A" and define a to be \7 O (fKa), g:(a))-
i=1

In A/x we have f;(b)=g;(b) for all i where b;:=[a;]a. Thus, by (i), r(B)=s(b),
whence r(d) « s(d) as required.

(ii)=>(iid) is trivial.

(ili)=>(@). Let A€¥" and dcA” with f(d)=g;(a) for alli. Let ¢: F¥" (n)—~A
be a homomorphism with x;¢=a;. Then \"} O(f,(%), g (X))Sker ¢ and so

i=1

r(%) ker ¢ s(xX) by (iii). Thus r{@)=s(d), as required.

In the following result we require the observation that if A4 is regular with
respect to @, ..., 4,6 A and ¢: A-—B is a surjective homomorphism with b;=a;¢,
then B is regular with respect to by, ..., b,

2.2. Theorem. The following are equivalent for any variety ¥ :

(i) ¥ =SR,;

(i) ¥ =R,;

(iii): there exist unary terms. uy, ..., 4, such that for all A€Y and all acA,
A is regular with respect to u,(a), ..., u,(a);

(iv) there exist unary terms u,, ..., u, such that for all Ac¥", all acA and all
acCon 4 if |[m(a)al=...=\[u,(a)]a]=1, then «=0;

(v) there exist unary terms uy, ..., u, and ternary terms piy, ..., Pum Such that

’Vi=(‘_§1 jélp"j(xyz) = u;(z))«-»x =Y
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(vi) there exist unary terms wuy,...,u, and ternary terins p,,...,p, and a
selection function j—i; such that ‘ s

v l=(j'é__':1 14 jv(xyz) = u,-j(z)) —-x=y.

Proof. That (i) implies (ii) is triyia{. Assume that ¥ =R,. Then there exist
Vs ..o, V€ F¥"(N) such that F¥ (N)is regular with respect to 2, ...,v,. Assume
that »,, ..., v, depend only upon xi, ..., Xy; then we can find an onto homo-
morphism Y: F¥ (N)-F¥ ({x, y,z}) with x;o=z for i=1,..,k. Thus the
image 1; of v, under ¢ depends only upon z and F¥" (3) is regular with respect to
Uyy ooy Uy, s '

Suppose that 4€¥", acA and a, fcCon A with [y (@)]a&[w(a))p for all i
Let s,2€4 with s « ¢t and define ¢: F¥ ({x,y,z})—~4 by x¢=s, yo=1, zp=a.
Then x & y where a denotes the inverse image of « under ¢. Now v & u;(z) implies
vp o y;(a); hence vo B u;(a) and so v B u(z). Thus [u,-(z)]&'g[u,-(z)]ﬁ for all i and
consequently XS B since F¥ ({x,y, z}) is regular with respect to u(2), ..., #,(2).
Hence v

soct:>x&y=>xﬁy:>sﬂt

and thus « S B. Hence (ii) implies (iii).

That (v) follows from (iii) is a direct consequence of the principal-congruence
characterization of regularity with respect to a, ...,a, given in Lemma 1.3 (i)
and the translation to quasi-identities given in Theorem 2.1: take 4=Fy¥ ({x, y, z}),
a=u(z), b=x, c=y and d;;=p;;(xyz). The equivalence of (v) and (vi) is clear.

The combination of Theorem 2.1 and Lemma 1.3 (v) shows that (v) implies (i).
It remains to prove that (iv) implies (iii).

Suppose that [y (a)]eS[w;(@]B for i=1,...,n; then [w(@]a=[u;(a)]aAp.
Consider the congruence a/(aAB) on A/(a/Af). The block of [1;(@]aAB in af(xAB)
is a singleton for all i and hence, by (iv), we have «/(aAB)=0 in Con Af(aAp).
Thus a=aAB and so oS B, as required.

The choice between (v) and (vi) is a matter of taste: in (v) the emphasis is on
the unary terms while the emphasis in (vi) is on the ternary terms. The equivalence
of SR, and R, was observed by GRATZER [8]. It is tempting to replace (iv) by

(ivy (VAe?)(3ay, ...,a,64)(VacCon A)({[a,]af =...= |[a,]Jal = 1) =a =0.

An algebra A with this property might be called regular at 0 with respect to a,, ..., a,.
But this property is not preserved by homomorphisms and so the proof method
used above is not applicable. The lattice L drawn below is regular at 0 with respect
to a as it is subdirectly irreducible and both ab and ac are critical edges (that is,
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©(a, b)=0(a, c) is the monolith of L). Since L/@(a,b) is a four—element cham it
is not regular at O with respect to any one of its elements.

The proof of our next result is now easy and is omitted.

2.3. Theorem. The following are equivalent for any variety ¥ :

() 7' E=SR; '

() GreN)¥ =5R,; (i) (VA€ )(3neN)4AE=SR,;

(ii) @neN)¥ =R,; (ii)y (VAEY)3BneN)AER,;

(iv) for all A€y, all B=A4 and all a€Con A if |[blej=1 for all beB,
then a=0;

(v) there exist n€N, unary terms ul,. ..U, and ternary terms py,...,Ds
such that

V(& Py = u(@) - x = .

Call a variety ¥~ locally regular wz‘t'h respect to unary terms uy, ..., u, (and write
¥ =LR(uy, ..., u,)) if

(VAN (Vaed) [(& [u(@e = (1)) = 6]z = al].

This concept was introduced, under a different name, in the important but un-
published paper HAGEMANN [10] where a characterization via identities was obtained;
no quasi-identity characterization was given. It is clear from Theorem 2.2 that, at
the varietal level, we have R,—LR,. The proof of the following result should by
now be an easy exercise. :

2.4. Theorem. The following are equivalent for any variety ¥~ and unary terms
Upy ooey Up:
(1) Y ELR(y, ..., 4,);
(ii) for aII A€y, all aEA and all «a, BEConA

£ (w(@le € [1@]) = lale  [a1f;
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(iii) for all A¢¥" and all a,bcA there exist d, ..., d,,€ A such that

O(a, b) = v B(ui(a), dy);

(iv) for all Ac¥", all acA and all acCon A if [ (@]al=...=|[u, (@]« =1,
then |[a]al=1;
(v) there exist binary terms pyy, ..., Pum such that

;//'=(i§‘1 jé1pif(xy) = "i(x))‘*x =y;

(vi) there exist binary terms p., ..., p, and a selection function j—i; such that

v i=(j?:x1 pi(xy) = u; (%)) = x = y.

Note that R(oy, ..., 0,) for constant terms o,, ..., 0, implies LR, and if the
terms in the definition. of LR, can be chosen to be constants then we obtain the
reverse implication. Thus Theorem 2.4 yields the quasi-identity characterization of

R(oy4, ..., 0,).

2.5. Corollary. The following are equivalent for any variety ¥  and constant
lerms 0y, ..., 0,:
() ¥ =R(oy, ..., 0,);
(ii) there exist binary terms pyy, ..., Pum Such that

(iii) there exist binary terms py, ...,p, and a selection function j—i; such that

k
Vh(jélpj(xy) = oij)“’x =Y.

3. Quasi-identities, congruence modularity and permutability. In this section we
give the general translation from quasi-identities to identities and investigate the
relationship between quasi-identities, congruence modularity and n-permutability.

Lemmas 3.1 and 3.2 are simply restatements of Mal’cev’s description of
principal congruences. If Z& A2, then ©O(Z) denotes the smallest congruence
containing Z.

3.1. Lemma. Let ZCA* and let (c,d)cA2. Then (c,d)cO(Z) if and only
if for some k, IEN there exist (14+2)-ary terms w,, ..., w,, there exists écA' and
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there are pairs (a;, b;) such that
c= wl(al9 bly é)

wl(bl, a, é) = w2(aly bl’ é)

Wk(bk’ ak, é) = d,
and (a;, b)EZ for all i.

3.2. Lemma. Let ZS A* and let (c,d)cA* Then (c,d)cO(Z) if and only
if for some k,IEN there exist (I+1)-ary terms wy, .oos Wy, there exists €A’ and
there are pairs (a;, b)) such that ’

¢ =w(a,, @

wl(b17 é) = Wz(a‘:a é)

‘vk(bki é) = d,
and (a;, b)eZ or (b, a)eZ for all i.

Recall that A4 is called k-permutable if for all «, fcCon 4. we have aVf=
=qofoa... (with k factors).

Clearly the last line of Lemma 3.2 is needed to guarantee symmetry. HAGEMANN
[10] showed that if ¥" is a k-permutable variety then for all A€¥", if R is a reflexive
subalgebra of 42, then Ro...oR (with k—1 factors) is a congruence. Using this
we can simplify Lemma 3.2. The result wasrediscovered by LAKSER [13] and Dupa [35].

3.3. Lemma. Assume that A belongs to a (k+1)-permutable variety. Let
ZS A® and let (c,d)c A% Then (c, d)eO(Z) if and only if for some IEN there
exist (I+1)-ary terms wy, ..., w,, there exists é€A' and there are pairs (a;, b;)
such that

c = wy(ay, &)

w1(by, &) = wy(a,, &)

' ‘vk(bk7 é) = d)
and (a;, b)cZ for all i.

The translation from quasi-identities to identities is obtained by combining
one of these lemmas with the principal-congruence translation given in the previous
section.
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3.4. Theorem. Let ¥ be a variety and let f;-,g,, r and s be n:ary terms.
Then the following are equivalent:

B ¥ = (& A = 2) ~ r®) = s(;

(ii) for some keEN there exist (n+2)-ary terms t,,....t and pairs
(uj, v;){(fi, g)li=1, ...,m} such that ¥ satisfies the identities

7‘(55) = tl(ul(x)’ vl(x‘)’ —x.)
tl(vl(f)s (%), 55) = tz(uz(f), 5(X), 5‘.)

tk(vl(x.)’ uy (%), 55) = 5(%); »
(iil) for some k€N there exist (n+1)-ary fterms. t, ...t and pairs
(u;, v, )E{(fi» 8D, (&i» f) | i=1, ..., m} such that ¥ satisfies

r(®) = 4(u (%), %)

ti(bl(f), X) = tz(uz(’?)s 55)

i (v(%), %) = s(%).

Proof. Assume that (i) holds. Then by Theorem 2.1 we have r(%)=s(%)(€(2))
on F¥ (n) where Z={(f;,g)|i=1, ..., m}. Thus by Lemma 3.1, for some k, [eN
there exist (/ +2)-ary terms wy, ..., w, and n-ary terms h,, ..., b, and pairs (4;, v;)€Z
such that (in F¥"(n))

7(55) = Wl(ul(x)’ 01(55)9 hl(x), wees hl(i))

Wl(vl(f)’ u (%), hy (%), ..., hi(f)) = Wz(uz(f), 02 (X), (R), ..., hz(’?))

wk(vk(x.)y up (X); by (%), ..., hz(f)) = s(%).

Thus (i) holds: define #;(y, z, X)=w;(y, z, by (%), ..., h,(Sc’)). That (ii) implies (i) is
trivial. In the same way, Lemma 3.2 yields the equivalence of (i) and (iii).

In just the same way, Theorem 2.1 and Lemima 3.3 combine to yield a simpler
Mal’cev condition in the (k-+1)-permutable case.

3.5. Theorem. Let ¥ be a (k+1)-permutable variety and let f,,g,,r and
s be n-ary terms. Then the following are equivalent:

O V(3 A0 = 8(®) - 1@ = s(;
()" there exist (n+1)-ary terms t,, ..., t, and pairs (u;, vj')é {( fi-g) \i=1, .., m}
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such that ¥ satisfies.the.identities
r(x) =4 (ul(i)a 55)
’1(”1(5"), 37) = ’2("2()-‘): 55)

' t,‘(uk(x) x) = 5(%).

If a variety 7" is k-permutable we shall write ¥ =P, and if ¥ is k-permutable
forsome k€N then we write ¥ =P,. Whenever every algebra in ¥ has a modular
congruence lattice we write ¥ = CM. We require the identities for k-permutability
(HAGEMANN and MITSCHKE [11]) and for congruence modularity DAY [4].

.3.6. Lemma. Let ¥ be qvariety.
(a) Let k=2. Then "/”t= P, if and only if there are.3-ary terms P15 s P
such that ¥ satisfies '
x = py(xzz),

Pi(xx2) = pis1(xzz) for all i,
Pr—1(xx2) = z.
(b) ¥'=CM if and only if for some n>2 there exist 4-ary terms nty, ..., m,
such that "I/' satisfies
R _ mo(x:yzw) =x, A

. rrli(xy}’i) :‘x ‘ Sor all i,
m;(xxww) = m;,,(xxww) for even i,
mi(eyyw) = meys(eyyw) for odd i,

: m,(xyzw) = w.

(©) ¥ =CM if and only if for some n=2 there exist 4-ary terms my, ..., m].
such that ¥ satisfies

mg(xyzw) = x,

n.t,-’(xyyx)‘= x o for all i,
m;(xyyw) = mi,,(xyyw) for even i,
m; (xxww) ='m,f+1(xxww) Jor odd i,
m)(xyzw) =

When the condition given in (b) above holds we shall write ¥ =CM,. Simi-
larly for the condition in (c) we write” ¥ |=CM,. For n=2 the m; and m] are
interdefinable but.do not seem to be for n=3. Clearly CM,=CM;, ,=CM, ,
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and hence VCM,=VCM;=CM. We shall refer to the terms m; and the terms m}
as the Day terms. : ' R
3.7. Lemma. Let ¥ be a variety. If ¥ ==CM, and the Day terms satisfy
my(xxxz)=m;(xzzz) for.all (even or odd) i, then ¥ \=P,. Similarly if ¥ =CM,
and the Day terms satisfy- m;(xxxz)=m;(xzzz) for all (even or odd) i, then ¥ \=P,.
Proof. Assume that ¥ =CM, with m,:(jc;xxz)‘=‘m,.(xzzz)“‘ for-all i. Define
3-ary terms p, ..., Dy-1; by .
. ; _ fmi(xxyz) for.odd i,
pilryz) = {m,-(xyzz) for even i.

Then by Lemma 3.6 (b) and our extra assumptxon we have
Pr(xz2) = ml(xxzz) mo(xxzz) =x,
(1 odd) p;(xxz) = m,-(xxxz) = my(xzzz) = myy,(x222) = p;,1(x22),
(i even)  p;(xxz) = m(xxzz) = m; 4, (xx22) = p;,,(x22),
Pu_1(xx2) = p,(x22) = ;nn(...z) =z
Thus, by Lemma 3.6. (a), we have ¥ =P: The proof for CM,—~P, is similar.

3.8. Lemma. On any variety we have:
(i) CM, +— CM; - P,;
(ii) CM? - P,.

Proot (i) Let m, be the nontnvnal term for CM,. Then m](xyzw):= ml(wzyx)
is the corresponding term for CM;. Thus CM,—~CM; and similarly CM’—»CM,,
The term for P, is given by pl(xyz) =m, (xxyz) Thus CM,--P, and the converse
holds by the previous lemma since .n;(xxxz)=ny(xxxz)=z=my(xzz2)=m,(xz22).

(i1) It is easily.seen that the Day-terms for CM; satisfy m; (xxxz)-m, (xzzz)
and hence CM;—P; by the prevmus lemma If p, and P are the terms for P, then
terms m; and m, for CM may be defined by ml(xyzw) =p,(xyz) and mz(xyzw)

:=p,(yzw); the identities for CM; are easily checked. Thus P;—CM;.

HAGEMANN [10] observed that for varieties we have R—~CM and R—»P Since
regularity is given by a quasmdentxty, it is natural to ask which quas1-1dent1t1es
yield CMand P,. ;

3.9. Theorem ‘Let ¥ be'a variety, let f,,gi be (n+2)-ary terms (n=0)
and let h; be unary terms such that ¥~ satt.sﬁes

| (.-él.f-'(’fﬂ) ?Agi(xxf)) —x=y

4%
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and
filxxz) = gi(xxz) = h;(2),

where z=(z...z). Then ¥ =CM&P,.

Proof. Assume that ¥ satisfies the quasi-identity and identities above, and
let t,,..., % be the (n+4)-ary terms given by Theorem 3.4. Thus there are pairs
(5, v;)€ {(f,, g) | i=1, ..., m} such that ¥ satisfies

x = t;(uy (xy2), v, (xy2), xyz)
t, (0, (xy32), uy (xy2), xyZ) = t,(ua(xy2), va(xy2), xyZ)

t(ve(xy2), wy(xyZ2), xyz) = y,
and there exist unary terms w;€{hy, ..., h,} such that
u;(xxz) = v;(xx2) = w;(2).
We shall prove that ¥ |=CMy; .1 &Py yy. Define the Day terms as follows:
mo(xyzw) = x, '
m2j—1(xyzw) = t;(l{j(yzw), Uj(yZV_V), XWV_V),
my; (xyzw) = t;(v;(rzw), u;(yzw), xww),
My 41 (xyzW) = W,
Rather than introduce w; into the calculations we shall repeatedly use the fact that
u;(xxz) and v;(xxz) are equal and independent of x. For 0<j<k -we have
A . myj—1(xyyx) = t)(u;(yyx), v;(Yyx), xx3) =
= (0, (7¥%), u;(yyx), xx5) = myy(xyyx) =
‘ = t;(v;(xx%), 1;(xx%), xx%) = ;41 ()41 (x¥xx), v, (Xxx, XXX) =
= j+1(uj4;1()’J’l‘)» v;+i(yy&),'xxz) = m2j+1(x}’y3_‘)~\

A similar calculation shows that m,(xyyx)=x and it follows by induction that
m; (xyyx) X for allz Now

mo(xxww) =x= tl(ul(xww) vl(xww), xww) = ml(xxww)
and similarly
Mo (Xxww) = (v (xww), uk(xww) Xww) =w = mzkﬂ(xxww),

and for O0<j<k we find
My (xxww) = t(v;(xww), u;(xww), xww) =

= tj+1(“j+1(xWLV)s vj+1(xww), XWW) = Myj 1 (XXWW).
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Hence m;(xxww)=m;,,(xxww) for i even. Finally, for 1=j=k we have
my;—1(xyyw) = t;(u;(yyw), v;(yyw), xww) =
= 1;(v;yw), u;(yyw), xww) = mg;(xyyw),
and thus m,(xyyw)=m;,;(xyyw) for i odd. Consequently ¥"&=CM, ., by Lemma
3.6 (b).

By Lemma 3.7, to show that ¥ =Py, it suffices to show that the Day terms
defined above satisfy m;(xxxz)=m;(xzzz) for odd i (and hence for all {). But for
l=j=k we find o

mgj_1(xxxz) = t;(u;(xx2), v;(xxz), x22) =
_ = t;(u;(z2z), vj(222), x22) = my;_,(x222),
as required.

These considerations lead us to ask for compact collections of identities char-
acterizing CM&P, and CM&P,. Note that CM&P, is equivalent to CM, &P,.
Our Lemma 3.7 gives a useful set of identities which imply CM, & P, while Lemma
3.8 shows that there is noting to do for k=2, 3.

4, Applications to congruence regularity. It is a simple exercise to apply the
results of Section 3 to the various forms of regularity (and we leave all of the details
to the reader). For example, we obtain at once that, at the varietal level,

(R(oy, ..., 0,) or R, or SR) -~ CM&P,.

Since every variety satisfies LR(x), Theorem 2.4 shows that in Theorem 3.9 we
cannot drop the additional assumption that f,(xxz) and g;(xxz) are independ-
ent of x.

Combining Theorems 2.2 and 2.3 with Theorem 3.5 gives the identities which

characterize R, and SR.

4.1. Theorem. Let ¥ be a wvariety. Then ¥ =R, if and only if there exist
unary terms uy, ..., u,, and for some k€N there are 4-ary terms t,, ..., t, and 3-ary
terms p,, ..., p, and there is a selection function j—i; such that ¥ satisfies

x = t,(pi(xy2), xyz)
ll(ui,(z)a xyz) = tz(l’z(xyz)’ xyz)

t(u;, (2), xyz) = y,
and p;(xxz)=u, (2) for all j.

4.2. Theorem. Let ¥ be a variety. Then ¥ =SR if and only if for some
neN there -exist unary terms -y, ...,u,, 4-ary terms t,,...,t, and 3-ary terms
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P> ..-s P, Such that ¥ satisfies : - :
x = tl(pl(xyz)’ xyz)
t(n(2), xyz) = t(Pa(xy2), xy2)

1,(u, (z) xyz) =y,
and p; (xxz) =u,(z) for all j. .
This characterization of subregulanty and the quasmdermty charactenzatlon
from Theorem 2.3 were obtained independently by Dupa [6, 7].
If we combine Theorems 2.4 and 3.4 to give identities for LR(uy, ..., u,) we
do not immediately obtain the identities given by HAGEMANN [10]. Theorem 3.4 and

the following lemma, whose proof we leave to the reader, provide the translation
from our identities to his. :

4. 3 Lemma Let n=2 and 1=0. The fol[owmg are equwalent fora variety V" :
(i) there exist (n +l)-ary terms Pis -5 Ps and q, ..., q, such. that‘ ¥ satisfies

(& p.(x1 K V.- yz) = q;(x;... X )1 y:))~x1 S

(i) there exist (n+D-ary terms. Upy ooey U, and { +1)—ary terms 'vl, s ¥, Such
that ¥ satisfies

(& U; (x1 XnY1-- }’1) =v; (xl}’1 J’l))*"xl = Xg,-

Moreover the transiation between (i) and (i) can be achieved in such -a way that on
¥ we have

{pix..xy,..y)=qx..xp..yli=1, .., s}=
= {u;x..xyi ) = vy ) li= 1., 8.
" 4.4. Theorem. Let Vv bea varlety Then the foI[owmg are equzvalent
(i) YELR(uy, ..., ,,)
(il for some k€N there exist 4-ary terms t,, ..., t, and bindry terms p;, ..., p;
and a selection function j—i; such-that ¥ satisfies
x = t,(py(xy), 43, (%), xy)

(4, (%), Pr(x9), xy) = t(po(x), u;, (%), xy)

t(u, (%), pe(xy), xy) = y,

and p,(vx) u; (x) for all j; S L
- (i) for some keN there exist 3-ary Ierms tl, -+> g .and binary terms, py, ..., p;
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and gq,, ..., q, and a selection function j—i; such that ¥ satisfies
x = t(py(xp), xy)
(g1 (xy), xy) = ta(pa(xy), x)

te(qe(xy), xy) = y,
and p;(xx)=q; (xx)=uji(x) Sfor all j.
Condition (iii) of this theorem is precisely the characterization of LR(y,, ..., u,)
given in HAGEMANN [10].
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