1,902 research outputs found

    Development of a Biomembrane Sensor Based on Reflectometry

    Get PDF
    Membranproteine spielen eine wichtige Rolle in vielen biochemischen Prozessen der Zelle, wie zum Beispiel der Signaltransduktion, der Zelladhesion oder auch der Erkennung von Krankheitserregern. Viele dieser Proteine sind von Bedeutung für die Entwicklung neuer innovativer Medikamente. Somit hat auch die Entwicklung von Sensoren, die die Untersuchung von Membranproteinen in ihrer natürlichen Umgebung erlauben an Bedeutung gewonnen [1]. Thema dieser Doktorarbeit war die Entwicklung von Analysekonzepten die es ermöglichen unterschiedliche Aspekte von Membraninteraktionen zu untersuchen und zu quantifizieren. Als Analysemethode wurde dafür reflektometrische Interferenz Spektroskopie (RIfS) eine markierungsfreie, optische Methode verwendet. RIfS erlaubt es die Höhe dünner transparenter Filme zu bestimmen, indem das Weißlicht-Reflexionspektrum eines solchen Films aufgezeichnet wird. Durch die Überlagerung der in dem Film mehrfach reflektierten Teilstrahlen entsteht ein Interferenzmuster im Reflexionsspektrum, welches Aufschluß gibt über die Schichtdicke und den Brechungsindex des transparenten Films. Es wurde bereits gezeigt, dass RIfS eine geeignete Methode zur Untersuchung von Protein-ProteinWechselwirkungen ist [2]. Aus diesem Grund wurde RIfS als Detektionsverfahren für die Entwicklung eines Membransensors gewählt. Im Laufe dieser Arbeit entstanden zwei Aufbauten für reflektometrische Messungen. Ein Standard RIfS Aufbau und ein Instrument das die Methode mit Fluoreszenz-Mikroskopie kombiniert. Um dieWechselwirkung von Proteinen selbst und Proteinen mit Membranbestandteilen wie Lipiden zu untersuchen, wurde ein Konzept basierend auf festkörperunterstützten Membranen entwickelt. Dieses Experiment erlaubt es die Wechselwirkungen auf artifiziellen Membranen, sowie auf rekonstituierten Zellmembranen zu untersuchen. Zudem wurde ein Analysekonzept mit Nano-BLMs entwickelt, dass es erlaubt den simultanen Transport von Molekülen in ein membranverschlossenes Kompartiment hinein als auch heraus zu beobachten. Neben diesen membranbasierten Experimenten wurde auch ein Konzept entwickelt, welches es erlaubt die molekulare Erkennungsreaktion von sehr kleiner Analyten direkt zu messen. Dieses Messkonzept erlaubt es die Bindung von Molekülen mit sehr kleinem Molekulargewicht an einen auf dem Sensor immobilisierten Partner direkt zu quantifizieren

    Anomalous diffusion and elastic mean free path in disorder-free multi-walled carbon nanotubes

    Full text link
    We explore the nature of anomalous diffusion of wave packets in disorder-free incommensurate multi-walled carbon nanotubes. The spectrum-averaged diffusion exponent is obtained by calculating the multifractal dimension of the energy spectrum. Depending on the shell chirality, the exponent is found to lie within the range 1/2η<11/2 \leq \eta < 1. For large unit cell mismatch between incommensurate shells, η\eta approaches the value 1/2 for diffusive motion. The energy-dependent quantum spreading reveals a complex density-of-states-dependent pattern with ballistic, super-diffusive or diffusive character.Comment: 4 pages, 4 figure

    Harmful Effect of Cherry Leaf Spot(Blumeriellajaapii)on Sour Cherry and Influence on Fruit Yield

    Get PDF
    The experiment was carried out in 2007-2012 in a sour cherry orchard with three cultivars – ‘Oblachinska’, ‘Schattenmorelle’ and ‘Heiman Ruby’- established in the region of the town of Hisar. In 2007 the control of cherryleafspot(Blumeriellajaapii) was conducted at improper time and inaccurate rates. That induced leaf defoliation in August. In the next vegetation periods (2008-2012) the control of cherry leaf spot was carried out by applying fungicides at definite rates at the most critical time for the host-pathogen system. During the next years (2009-2012) the trees of ‘Oblachinska’ cultivar yielded normally – 1300 kg/dekar, while the trees of the other two cultivars started improving their health status and the yield gradually increased, reaching up to 1600 kg/dekar(da) for ‘Heiman Ruby’ and 1100 kg/da for ‘Schattenmorelle’

    Virus-associated anterior uveitis and secondary glaucoma: Diagnostics, clinical characteristics, and surgical options

    Get PDF
    In this retrospective, single-center, observational study, we compared the clinical characteristics, analyzed the glaucoma development, and the glaucoma surgery requirement mediators in patients with different virus-associated anterior uveitis (VAU). In total, 270 patients (= eyes) with VAU confirmed by positive Goldmann-Witmer coefficients (GWC) for cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), rubella virus (RV), and multiple virus (MV) were included. Clinical records of these patients were analyzed. Demographic constitution, clinical findings, glaucoma development, and surgeries were recorded. The concentrations of 27 immune mediators were measured in 150 samples of aqueous humor. The GWC analysis demonstrated positive results for CMV in 57 (21%), HSV in 77 (29%), VZV in 45 (17%), RV in 77 (29%), and MV in 14 (5%) patients. CMV and RV AU occurred predominantly in younger and male patients, while VZV and HSV AU appeared mainly with the elderly and females (P<0.0001). The clinical features of all viruses revealed many similarities. In total, 52 patients (19%) showed glaucomatous damage and of these, 27 patients (10%) needed a glaucoma surgery. Minimal-invasive glaucoma surgery (MIGS) showed a reliable IOP reduction in the short-term period. In 10 patients (37%), the first surgical intervention failed and a follow-up surgery was required. We conclude that different virus entities in anterior uveitis present specific risks for the development of glaucoma as well as necessary surgery. MIGS can be suggested as first-line-treatment in individual cases, however, the device needs to be carefully chosen by experienced specialists based on the individual needs of the patient. Filtrating glaucoma surgery can be recommended in VAU as an effective therapy to reduce the IOP over a longer period of time

    A Novel Approach to Generate Hourly Photovoltaic Power Scenarios

    Get PDF
    Photovoltaic power is playing an ever-increasing role in the energy mix of countries worldwide. It is a stochastic energy source, and simulation models are needed to establish reliable risk management. This paper presents a novel approach for simulating hourly solar irradiation and—as a consequence—photovoltaic power based on easily accessible data such as wind, temperature, and cloudiness. Solar simulations are generated via a multiplication factor that scales the maximum possible solar irradiation. Photovoltaic simulations are then derived using formulas that approximate the physical interdependencies. The resulting simulations are unbiased on an annual level and reasonably reflect historic irradiation movements. Interpreting our approach as a descriptive model, we find that error values vary over the year and with granularity. Errors are highest when considering hourly values in wintertime, especially in the morning or late afternoon

    Molecular signature of response to preoperative radiotherapy in locally advanced breast cancer

    Get PDF
    Background: Radiation therapy is an indispensable part of various treatment modalities for breast cancer. Specifically, for non-inflammatory locally advanced breast cancer (LABC) patients, preoperative radiotherapy (pRT) is currently indicated as a second line therapy in the event of lack of response to neoadjuvant chemotherapy. Still approximately one third of patients fails to respond favourably to pRT. The aim of this study was to explore molecular mechanisms underlying differential response to radiotherapy (RT) to identify predictive biomarkers and potential targets for increasing radiosensitivity.Methods: The study was based on a cohort of 134 LABC patients, treated at the Institute of Oncology and Radiology of Serbia (IORS) with pRT, without previous or concomitant systemic therapy. Baseline transcriptional profiles were established using Agilent 60 K microarray platform in a subset of 23 formalin-fixed paraffin-embedded (FFPE) LABC tumour samples of which 11 radiotherapy naïve and 3 post-radiotherapy samples passed quality control and were used for downstream analysis. Biological networks and signalling pathways underlying differential response to RT were identified using Ingenuity Pathways Analysis software. Predictive value of candidate genes in the preoperative setting was further validated by qRT-PCR in an independent subset of 60 LABC samples of which 42 had sufficient quality for data analysis, and in postoperative setting using microarray data from 344 node-negative breast cancer patients (Erasmus cohort, GSE2034 and GSE5327) treated either with surgery only (20%) or surgery with RT (80%).Results: We identified 192 significantly differentially expressed genes (FDR < 0.10) between pRT-responsive and non-responsive tumours, related to regulation of cellular development, growth and proliferation, cell cycle control of chromosomal replication, glucose metabolism and NAD biosynthesis II route. APOA1, MAP3K4, and MMP14 genes were differentially expressed (FDR < 0.20) between pRT responders and non-responders in preoperative setting, while MAP3K4 was further validated as RT-specific predictive biomarker of distant metastasis free survival (HR = 2.54, [95%CI:1.42–4.55], p = 0.002) in the postoperative setting.Conclusions: This study pinpoints MAP3K4 as a putative biomarker of response to RT in both preoperative and postoperative settings and a potential target for radiosensitising combination therapy, warranting further pre-clinical studies and prospective clinical validation

    LEM All-Sky Survey: Soft X-ray Sky at Microcalorimeter Resolution

    Full text link
    The Line Emission Mapper (LEM) is an X-ray Probe with with spectral resolution ~2 eV FWHM from 0.2 to 2.5 keV and effective area >2,500 cm2^2 at 1 keV, covering a 33 arcmin diameter Field of View with 15 arcsec angular resolution, capable of performing efficient scanning observations of very large sky areas and enabling the first high spectral resolution survey of the full sky. The LEM-All-Sky Survey (LASS) is expected to follow the success of previous all sky surveys such as ROSAT and eROSITA, adding a third dimension provided by the high resolution microcalorimeter spectrometer, with each 15 arcsec pixel of the survey including a full 1-2 eV resolution energy spectrum that can be integrated over any area of the sky to provide statistical accuracy. Like its predecessors, LASS will provide both a long-lasting legacy and open the door to the unknown, enabling new discoveries and delivering the baseline for unique GO studies. No other current or planned mission has the combination of microcalorimeter energy resolution and large grasp to cover the whole sky while maintaining good angular resolution and imaging capabilities. LASS will be able to probe the physical conditions of the hot phases of the Milky Way at multiple scales, from emission in the Solar system due to Solar Wind Charge eXchange, to the interstellar and circumgalactic media, including the North Polar Spur and the Fermi/eROSITA bubbles. It will measure velocities of gas in the inner part of the Galaxy and extract the emissivity of the Local Hot Bubble. By maintaining the original angular resolution, LASS will also be able to study classes of point sources through stacking. For classes with ~10410^4 objects, it will provide the equivalent of 1 Ms of high spectral resolution data. We describe the technical specifications of LASS and highlight the main scientific objectives that will be addressed. (Abridged)Comment: White Paper in support of a mission concept to be submitted for the 2023 NASA Astrophysics Probes opportunity. This White Paper will be updated when required. 30 pages, 25 figure

    Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways

    Get PDF
    The Covid-19 pandemic has pushed many hospitals to their capacity limits. Therefore, a triage of patients has been discussed controversially primarily through an ethical perspective. The term triage contains many aspects such as urgency of treatment, severity of the disease and pre-existing conditions, access to critical care, or the classification of patients regarding subsequent clinical pathways starting from the emergency department. The determination of the pathways is important not only for patient care, but also for capacity planning in hospitals. We examine the performance of a human-made triage algorithm for clinical pathways which is considered a guideline for emergency departments in Germany based on a large multicenter dataset with over 4,000 European Covid-19 patients from the LEOSS registry. We find an accuracy of 28 percent and approximately 15 percent sensitivity for the ward class. The results serve as a benchmark for our extensions including an additional category of palliative care as a new label, analytics, AI, XAI, and interactive techniques. We find significant potential of analytics and AI in Covid-19 triage regarding accuracy, sensitivity, and other performance metrics whilst our interactive human-AI algorithm shows superior performance with approximately 73 percent accuracy and up to 76 percent sensitivity. The results are independent of the data preparation process regarding the imputation of missing values or grouping of comorbidities. In addition, we find that the consideration of an additional label palliative care does not improve the results
    corecore