8 research outputs found
Patient-Specific Circulating Tumor DNA Detection during Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
Abstract
BACKGROUND
In nonmetastatic triple-negative breast cancer (TNBC) patients, we investigated whether circulating tumor DNA (ctDNA) detection can reflect the tumor response to neoadjuvant chemotherapy (NCT) and detect minimal residual disease after surgery.
METHODS
Ten milliliters of plasma were collected at 4 time points: before NCT; after 1 cycle; before surgery; after surgery. Customized droplet digital PCR (ddPCR) assays were used to track tumor protein p53 (TP53) mutations previously characterized in tumor tissue by massively parallel sequencing (MPS).
RESULTS
Forty-six patients with nonmetastatic TNBC were enrolled. TP53 mutations were identified in 40 of them. Customized ddPCR probes were validated for 38 patients, with excellent correlation with MPS (r = 0.99), specificity (â„2 droplets/assay), and sensitivity (at least 0.1%). At baseline, ctDNA was detected in 27/36 patients (75%). Its detection was associated with mitotic index (P = 0.003), tumor grade (P = 0.003), and stage (P = 0.03). During treatment, we observed a drop of ctDNA levels in all patients but 1. No patient had detectable ctDNA after surgery. The patient with rising ctDNA levels experienced tumor progression during NCT. Pathological complete response (16/38 patients) was not correlated with ctDNA detection at any time point. ctDNA positivity after 1 cycle of NCT was correlated with shorter disease-free (P < 0.001) and overall (P = 0.006) survival.
CONCLUSIONS
Customized ctDNA detection by ddPCR achieved a 75% detection rate at baseline. During NCT, ctDNA levels decreased quickly and minimal residual disease was not detected after surgery. However, a slow decrease of ctDNA level during NCT was strongly associated with shorter survival
Different Pigmentation Risk Loci for High-Risk Monosomy 3 and Low-Risk Disomy 3 Uveal Melanomas
International audienceAbstract Background Uveal melanoma (UM), a rare malignant tumor of the eye, is predominantly observed in populations of European ancestry. UMs carrying a monosomy 3 (M3) frequently relapse mainly in the liver, whereas UMs with disomy 3 (D3) are associated with more favorable outcome. Here, we explored the UM genetic predisposition factors in a large genome-wide association study (GWAS) of 1,142 European UM patients and 882 healthy controls.Methods We combined two independent datasets (GSA array) with the dataset described in a previously published GWAS in UM (Omni5 array), which were imputed separately and subsequently merged. Patients were stratified according to their chromosome 3 status and identified UM risk loci were tested for differential association with M3 or D3 subgroups. All statistical tests were two-sided.Results We recapitulated the previously identified risk locus on chromosome 5 on CLPTM1L (rs421284: odds ratio [OR] =1.58, 95% confidence interval [CI] = 1.35-1.86; P=1.98âĂâ10-8) and identified two additional risk loci involved in eye pigmentation: IRF4 locus on chromosome 6 (rs12203592: ORâ=â1.76, 95% CIâ=â1.44-2.16; P =3.55âĂâ10-8) and HERC locus on chromosome 15 (rs12913832: ORâ=â0.57, 95% CIâ=â0.48-0.67; P =1.88âĂâ10-11). The IRF4 rs12203592 SNP was found to be exclusively associated with risk for the D3 UM subtype (ORD3 = 2.73, 95% CIâ=â1.87-3.97; P =1.78âĂâ10-7), and the HERC2 rs12913832 SNP was exclusively associated with risk for the M3 UM subtype (ORM3 = 2.43, 95% CIâ=â1.79-3.29; P =1.13âĂâ10-8). However, the CLPTM1L risk locus was equally statistically significant in both subgroups.Conclusion This work identified two additional UM risk loci known for their role in pigmentation. Importantly, we demonstrate that UM tumor biology and metastatic potential are influenced by patientsâ genetic backgrounds
Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR
International audienceBACKGROUND: Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited.METHODS: We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqManÂź oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events.RESULTS: The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations.CONCLUSIONS: This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy
Accelerated subsequent lung cancer after post-operative radiotherapy for breast cancer
International audienceBackground: Post-operative whole breast radiotherapy for breast cancer (BC) may increase the risk of subsequent lung cancer (LC). The impact of radiotherapy intensification (boost) has not been specifically explored in this context. We investigated the role of radiation modalities on the development of subsequent LC among our patients treated by radiotherapy for localized BC. Methods: All patients with a diagnosis of LC between 2000 and 2020 with a history of prior localized BC treated by surgery and post-operative radiotherapy were retrospectively reviewed. Primary endpoint was time to first diagnosis of LC after BC treatment with radiotherapy (RT). Results: From 98 patients who developed subsequent LC after primary BC treated with post-operative RT, 38% of patients (n = 37) received an additional RT boost, and 46% (n = 45) received hormonal treatment post radiation. A total of 61% (n = 60) were smokers. With regards to LC characteristics, adenocarcinoma was the most frequent histology (68%, n = 66); 36% (n = 35) harbored at least 1 molecular alteration, 57% (n = 20) of them being amenable to targeted therapy. Median time to first diagnosis of LC was 6 years [1.7â28.4 yrs] in the whole cohort. In the subgroup of patients treated with boost this time was reduced to 4 years [1.8â20.8 years] compared to 8 years for patients without boost [1.7â28.4 yrs] (p = 0.007). Boost, smoking usage, endocrine therapy, and age <50 yrs old at BC radiation remained independent factors associated with shorter time to first diagnosis of LC after BC treatment. Discussion: We report for the first time the potential impact of boost -part of BC radiation treatment- for BC on the risk of subsequent LC. The impact of low dose radiation on lung parenchyma could explain this phenomenon, but the underlying physiopathology is still under investigation. This work highlights the need for clinicians to identify patients at risk of developing faster subsequent thoracic malignancy after BC radiation, for implementing personalized surveillance
Digital phenotyping in young breast cancer patients treated with neoadjuvant chemotherapy (the NeoFit Trial): protocol for a national, multicenter single-arm trial
International audienceBackground: Breast cancer (BC) has particular characteristics in young women, with diagnosis at more advanced stages, a poorer prognosis and highly aggressive tumors. In NeoFit, we will use an activity tracker to identify and describe various digital profiles (heart rate, physical activity, and sleep patterns) in women below the age of 45 years on neoadjuvant chemotherapy for BC. Methods: NeoFit is a prospective, national, multicenter, single-arm open-label study. It will include 300 women below the age of 45 years treated with neoadjuvant chemotherapy for BC. Participants will be asked to wear a Withing Steel HR activity tracker round the clock for 12 months. The principal assessments will be performed at baseline, at the end of neoadjuvant chemotherapy and at 12 months. We will evaluate clinical parameters, such as toxicity and the efficacy of chemotherapy, together with quality of life, fatigue, and parameters relating to lifestyle and physical activity. The women will complete REDCap form questionnaires via a secure internet link. Discussion: In this study, the use of an activity tracker will enable us to visualize changes in the lifestyle of young women on neoadjuvant chemotherapy for BC, over the course of a one-year period. This exploratory study will provide crucial insight into the digital phenotypes of young BC patients on neoadjuvant chemotherapy and the relationship between these phenotypes and the toxicity and efficacy of treatment. This trial will pave the way for interventional studies involving sleep and physical activity interventions
Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients
International audienceTumor-draining lymph node (TDLN) invasion by metastatic cells in breast cancer correlates with poor prognosis and is associated with local immunosuppression, which can be partly mediated by regulatory T cells (Tregs). Here, we study Tregs from matched tumor-invaded and non-invaded TDLNs, and breast tumors. We observe that Treg frequencies increase with nodal invasion, and that Tregs express higher levels of co-inhibitory/stimulatory receptors than effector cells. Also, while Tregs show conserved suppressive function in TDLN and tumor, conventional T cells (Tconvs) in TDLNs proliferate and produce Th1-inflammatory cytokines, but are dysfunctional in the tumor. We describe a common transcriptomic signature shared by Tregs from tumors and nodes, including CD80, which is significantly associated with poor patient survival. TCR RNA-sequencing analysis indicates trafficking between TDLNs and tumors and ongoing Tconv/Treg conversion. Overall, TDLN Tregs are functional and express a distinct pattern of druggable co-receptors, highlighting their potential as targets for cancer immunotherapy