21 research outputs found

    Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future

    Get PDF
    Chemical vapor deposition (CVD) is a technique for the fabrication of thin films of polymeric materials, which has successfully overcome some of the issues faced by wet chemical fabrication and other deposition methods. There are many hybrid techniques, which arise from CVD and are constantly evolving in order to modify the properties of the fabricated thin films. Amongst them, plasma enhanced chemical vapor deposition (PECVD) is a technique that can extend the applicability of the method for various precursors, reactive organic and inorganic materials as well as inert materials. Organic/inorganic monomers, which are used as precursors in the PECVD technique, undergo disintegration and radical polymerization while exposed to a high-energy plasma stream, followed by thin film deposition. In this chapter, we have provided a summary of the history, various characteristics as well as the main applications of PECVD. By demonstrating the advantages and disadvantages of PECVD, we have provided a comparison of this technique with other techniques. PECVD, like any other techniques, still suffers from some restrictions, such as selection of appropriate monomers, or suitable inlet instrument. However, the remarkable properties of this technique and variety of possible applications make it an area of interest for researchers, and offers potential for many future developments

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Research Update: A minimal region of squid reflectin for vapor-induced light scattering

    No full text
    Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly

    Vertically Aligned Peptide Nanostructures Using Plasma-Enhanced Chemical Vapor Deposition

    No full text
    In this study, we utilize plasma-enhanced chemical vapor deposition (PECVD) for the deposition of nanostructures composed of diphenylalanine. PECVD is a solvent-free approach and allows sublimation of the peptide to form dense, uniform arrays of peptide nanostructures on a variety of substrates. The PECVD deposited d-diphenylalanine nanostructures have a range of chemical and physical properties depending on the specific discharge parameters used during the deposition process

    Iridescent biofilms of Cellulophaga lytica are tunable platforms for scalable, ordered materials

    No full text
    Abstract Nature offers many examples of materials which exhibit exceptional properties due to hierarchical assembly of their constituents. In well-studied multi-cellular systems, such as the morpho butterfly, a visible indication of having ordered submicron features is given by the display of structural color. Detailed investigations of nature’s designs have yielded mechanistic insights and led to the development of biomimetic materials at laboratory scales. However, the manufacturing of hierarchical assemblies at industrial scales remains difficult. Biomanufacturing aims to leverage the autonomy of biological systems to produce materials at lower cost and with fewer carbon emissions. Earlier reports documented that some bacteria, particularly those with gliding motility, self-assemble into biofilms with polycrystalline structures and exhibit glittery, iridescent colors. The current study demonstrates the potential of using one of these bacteria, Cellulophaga lytica, as a platform for the large scale biomanufacturing of ordered materials. Specific approaches for controlling C. lytica biofilm optical, spatial and temporal properties are reported. Complementary microscopy-based studies reveal that biofilm color variations are attributed to changes in morphology induced by cellular responses to the local environment. Incorporation of C. lytica biofilms into materials is also demonstrated, thereby facilitating their handling and downstream processing, as would be needed during manufacturing processes. Finally, the utility of C. lytica as a self-printing, photonic ink is established by this study. In summary, autonomous surface assembly of C. lytica under ambient conditions and across multiple length scales circumvent challenges that currently hinder production of ordered materials in industrial settings
    corecore