32 research outputs found

    Studium mikrostruktury a vlastností M-Al-(Si-)N

    Get PDF
    In this work, microstructure and properties of M-Al-(Si-)N nanocrystalline hard coatings and thin film nanocomposites deposited by cathodic arc evaporation (CAE) process at different positions of substrates in the deposition apparatus were investigated using the combination of electron probe microanalysis, X-ray diffraction, transmission electron microscopy with high resolution and hardness measurement. Six series of specimens that differed in the transition metal type (Cr, Ti and Zr) and in the amount of Si and Al were deposited using the CAE process in the deposition apparatus π-80 produced by Platit AG. The essential microstructural parameters; the chemical and phase composition, the residual stress, preferred orientation of crystallites, crystallite size and mutual disorientation of crystallites were determined in all coatings under study. The derived microstructural parameters were correlated with the hardness of coatings. Finally, the microstructural model of the nanocrystalline hard coatings and thin film nanocomposites formation was developed. Depending on the sample chemical composition, three regions with different phase compositions exist in the coatings. In the transition metal richest samples, a single fcc M1-x- yAlxSiyN phase exists in the coating. With increasing Al content,...Tato práce je věnována studiu mikrostruktury a vlastností M-Al-(Si-)N nanokrystalických tvrdých povlaků a nanokompozitních tenkých vrstev, deponovaných napařováním v katodovém oblouku (CAE), kombinací metod elektronové mikroanalýzy, difrakce rentgenového záření, transmisní elektronové mikroskopie s vysokým rozlišením (TEM / HRTEM) a měřením mikrotvrdosti. Šest sérií vzorků, lišících se typem přechodového kovu (Cr, Ti and Zr) a množstvím Al a Si v závislosti na pozici substrátu vzhledem ke katodám, bylo deponováno CAE procesem v depozičním přístroji π-80 vyrobeném firmou Platit AG. Ve všech studovaných povlacích byly určeny základní mikrostrukturní parametry, jmenovitě chemické a fázové složení, zbytková napětí, preferenční orientace krystalitů, velikost koherentně difraktujících domén a vzájemná desorientace krystalitů. Odvozené mikrostrukturní parametry byly korelovány s mechanickými vlastnostmi vrstev - mikrotvrdostí. Následně byl vytvořen mikrostrukturní model vývoje nanokrystalických tvrdých povlaků a nanokompozitních tenkých vrstev. V závislosti na chemickém složení vzorků existují ve studovaných vrstvách tři oblasti lišící se fázovým složením. Ve vzorcích s nejvyšší koncentrací přechodového kovu existuje pouze jediná - kubická plošně centrovaná (kpc) M1-x-yAlxSiyN fáze. Se vzrůstající...Katedra fyziky kondenzovaných látekDepartment of Condensed Matter PhysicsFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Mechanical Properties and Microstructure Development in Ultrafine‐grained Materials Processed by Equal‐channel Angular Pressing

    Get PDF
    In this chapter, the detailed characterization of processes of grain fragmentation and refinement resulting from gradual imposition of strain by individual equal‐channel angular pressing (ECAP) passes is reported. A great emphasis is placed on the processing of materials with different crystal structure, particularly the face‐centred cubic (FCC), the body‐centred cubic (BCC) and the hexagonal close‐packed (HCP). Advanced techniques of electron microscopy, electron and X‐ray diffraction and positron annihilation spectroscopy have been employed to characterize microstructure, texture and defect evolution in the material as a function of strain imposed by ECAP. Microstructure development was correlated with mechanical properties obtained by both mechanical tests and microhardness measurements. Processes controlling the microstructure refinement and texture development were identified and discussed in detail

    Antiferroelectric negative capacitance from a structural phase transition in zirconia

    Full text link
    Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2_2 and ZrO2_2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2_2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically 'forbidden' region of the antiferroelectric transition in ZrO2_2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions

    Microstructure and Properties of Nanocrystalline Hard Coatings and Thin Film Nanocomposites

    No full text
    In this work, microstructure and properties of M-Al-(Si-)N nanocrystalline hard coatings and thin film nanocomposites deposited by cathodic arc evaporation (CAE) process at different positions of substrates in the deposition apparatus were investigated using the combination of electron probe microanalysis, X-ray diffraction, transmission electron microscopy with high resolution and hardness measurement. Six series of specimens that differed in the transition metal type (Cr, Ti and Zr) and in the amount of Si and Al were deposited using the CAE process in the deposition apparatus π-80 produced by Platit AG. The essential microstructural parameters; the chemical and phase composition, the residual stress, preferred orientation of crystallites, crystallite size and mutual disorientation of crystallites were determined in all coatings under study. The derived microstructural parameters were correlated with the hardness of coatings. Finally, the microstructural model of the nanocrystalline hard coatings and thin film nanocomposites formation was developed. Depending on the sample chemical composition, three regions with different phase compositions exist in the coatings. In the transition metal richest samples, a single fcc M1-x- yAlxSiyN phase exists in the coating. With increasing Al content,..

    Mikrostruktura a vlastnosti nanokrystalických tvrdých povlaků a nanokompozitních tenkých vrstev

    No full text
    Tato práce je věnována studiu mikrostruktury a vlastností M-Al-(Si-)N nanokrystalických tvrdých povlaků a nanokompozitních tenkých vrstev, deponovaných napařováním v katodovém oblouku (CAE), kombinací metod elektronové mikroanalýzy, difrakce rentgenového záření, transmisní elektronové mikroskopie s vysokým rozlišením (TEM / HRTEM) a měřením mikrotvrdosti. Šest sérií vzorků, lišících se typem přechodového kovu (Cr, Ti and Zr) a množstvím Al a Si v závislosti na pozici substrátu vzhledem ke katodám, bylo deponováno CAE procesem v depozičním přístroji π-80 vyrobeném firmou Platit AG. Ve všech studovaných povlacích byly určeny základní mikrostrukturní parametry, jmenovitě chemické a fázové složení, zbytková napětí, preferenční orientace krystalitů, velikost koherentně difraktujících domén a vzájemná desorientace krystalitů. Odvozené mikrostrukturní parametry byly korelovány s mechanickými vlastnostmi vrstev - mikrotvrdostí. Následně byl vytvořen mikrostrukturní model vývoje nanokrystalických tvrdých povlaků a nanokompozitních tenkých vrstev. V závislosti na chemickém složení vzorků existují ve studovaných vrstvách tři oblasti lišící se fázovým složením. Ve vzorcích s nejvyšší koncentrací přechodového kovu existuje pouze jediná - kubická plošně centrovaná (kpc) M1-x-yAlxSiyN fáze. Se vzrůstající...In this work, microstructure and properties of M-Al-(Si-)N nanocrystalline hard coatings and thin film nanocomposites deposited by cathodic arc evaporation (CAE) process at different positions of substrates in the deposition apparatus were investigated using the combination of electron probe microanalysis, X-ray diffraction, transmission electron microscopy with high resolution and hardness measurement. Six series of specimens that differed in the transition metal type (Cr, Ti and Zr) and in the amount of Si and Al were deposited using the CAE process in the deposition apparatus π-80 produced by Platit AG. The essential microstructural parameters; the chemical and phase composition, the residual stress, preferred orientation of crystallites, crystallite size and mutual disorientation of crystallites were determined in all coatings under study. The derived microstructural parameters were correlated with the hardness of coatings. Finally, the microstructural model of the nanocrystalline hard coatings and thin film nanocomposites formation was developed. Depending on the sample chemical composition, three regions with different phase compositions exist in the coatings. In the transition metal richest samples, a single fcc M1-x- yAlxSiyN phase exists in the coating. With increasing Al content,...Katedra fyziky kondenzovaných látekDepartment of Condensed Matter PhysicsFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Microstructure and Properties of Nanocrystalline Hard Coatings and Thin Film Nanocomposites

    No full text
    In this work, microstructure and properties of M-Al-(Si-)N nanocrystalline hard coatings and thin film nanocomposites deposited by cathodic arc evaporation (CAE) process at different positions of substrates in the deposition apparatus were investigated using the combination of electron probe microanalysis, X-ray diffraction, transmission electron microscopy with high resolution and hardness measurement. Six series of specimens that differed in the transition metal type (Cr, Ti and Zr) and in the amount of Si and Al were deposited using the CAE process in the deposition apparatus π-80 produced by Platit AG. The essential microstructural parameters; the chemical and phase composition, the residual stress, preferred orientation of crystallites, crystallite size and mutual disorientation of crystallites were determined in all coatings under study. The derived microstructural parameters were correlated with the hardness of coatings. Finally, the microstructural model of the nanocrystalline hard coatings and thin film nanocomposites formation was developed. Depending on the sample chemical composition, three regions with different phase compositions exist in the coatings. In the transition metal richest samples, a single fcc M1-x- yAlxSiyN phase exists in the coating. With increasing Al content,..

    Microstructure and Properties of Nanocrystalline Hard Coatings and Thin Film Nanocomposites

    No full text
    In this work, microstructure and properties of M-Al-(Si-)N nanocrystalline hard coatings and thin film nanocomposites deposited by cathodic arc evaporation (CAE) process at different positions of substrates in the deposition apparatus were investigated using the combination of electron probe microanalysis, X-ray diffraction, transmission electron microscopy with high resolution and hardness measurement. Six series of specimens that differed in the transition metal type (Cr, Ti and Zr) and in the amount of Si and Al were deposited using the CAE process in the deposition apparatus π-80 produced by Platit AG. The essential microstructural parameters; the chemical and phase composition, the residual stress, preferred orientation of crystallites, crystallite size and mutual disorientation of crystallites were determined in all coatings under study. The derived microstructural parameters were correlated with the hardness of coatings. Finally, the microstructural model of the nanocrystalline hard coatings and thin film nanocomposites formation was developed. Depending on the sample chemical composition, three regions with different phase compositions exist in the coatings. In the transition metal richest samples, a single fcc M1-x- yAlxSiyN phase exists in the coating. With increasing Al content,..

    Capability of X-ray diffraction for the study of microstructure of metastable thin films

    No full text
    Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,Al)N samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species

    Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

    No full text
    Low temperature magnetic ordering in the LiFePO 4 compound is investigated experimentally using Mössbauer spectroscopy and theoretically via first principles calculations. The evaluation of experiment carried out on a powder sample is compatible with an antiferromagnetic order of Fe ion magnetic moments. When an external magnetic field is applied, Fe magnetic moments start to deviate slightly from the [010] easy magnetization direction. These findings are confirmed by means of first principles calculations, which also suggest the magnitude of single ion magnetic anisotropy and orbital and spin-dipolar contributions to the magnetic hyperfine field, which is eventually in a good agreement with the experiment. Diffraction and magnetic measurements complement the study

    Refining bimodal microstructure of materials with MSTRUCT

    No full text
    The possibilities of modelling the diffraction profiles from bimodal microstructure in computer program MSTRUCT are demonstrated on two examples. A special “Double Component” profile effect can be utilized for such problems. At first it was applied to an analysis of a mixture of two nanocrystalline anatase powders with different crystallite sizes and the relative ratio of both components was determined from X-ray diffraction data. In the second case study, diffraction peaks from a pure polycrystalline copper sample treated by equal channel angular pressing were fitted using a two-phase model of large recrystallized defect-free grains and ultrafine crystallites with high dislocation density. The method is shown to be suitable for determination of the relative fraction of the microstructural components as well as other parameters (e.g. dislocation density).Web of Science29S41S3
    corecore