52 research outputs found

    Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone

    Get PDF
    Ocean‐driven melting of ice shelves is a primary mechanism for ice loss from Antarctica. However, due to the difficulty in accessing the sub‐ice shelf ocean cavity, the relationship between ice shelf melting and ocean conditions is poorly understood, particularly near the grounding zone, where the ice transitions from grounded to floating. We present the first borehole oceanographic observations from the grounding zone of the Ross Ice Shelf, Antarctica's largest ice shelf by area. Contrary to predictions that tidal currents near grounding zones mix the water column, we found that Ross Ice Shelf waters were vertically stratified. Current velocities at middepth in the ocean cavity did not change significantly over measurement periods at two different parts of the tidal cycle. The observed stratification resulted in low melt rates near this portion of the grounding zone, inferred from phase‐sensitive radar observations. These melt rates were generally <10 cm/year, which is lower than average for the Ross Ice Shelf (∌20 cm/year). Melt rates may be higher at portions of the grounding zone that experience higher subglacial discharge or stronger tidal mixing. Stratification in the cavity at the borehole site was prone to diffusive convection as a result of ice shelf melting. Since diffusive convection influences vertical heat and salt fluxes differently than shear‐driven turbulence, this process may affect ice shelf melting and merits further consideration in ocean models of sub‐ice shelf circulation

    Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica

    Get PDF
    Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota.National Science Foundation/[PLR1439774]/NSF/Estados UnidosNational Science Foundation/[PLR1115245]/NSF/Estados UnidosNational Science Foundation/[PLR 1543537]/NSF/Estados UnidosNational Aeronautics and Space Administration/[NNH14ZDA001N-PSTAR]/NASA/Estados UnidosUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de BiologĂ­

    Life thrives beneath Antarctic glacier

    No full text

    Subglacial Lake Whillans microbial biogeochemistry:A synthesis of current knowledge

    No full text
    Liquid water occurs below glaciers and ice sheets globally, enabling the existence of an array of aquatic microbial ecosystems. In Antarctica, large subglacial lakes are present beneath hundreds to thousands of metres of ice, and scientific interest in exploring these environments has escalated over the past decade. After years of planning, the first team of scientists and engineers cleanly accessed and retrieved pristine samples from a West Antarctic subglacial lake ecosystem in January 2013. This paper reviews the findings to date on Subglacial Lake Whillans and presents new supporting data on the carbon and energy metabolism of resident microbes. The analysis of water and sediments from the lake revealed a diverse microbial community composed of bacteria and archaea that are close relatives of species known to use reduced N, S or Fe and CH4 as energy sources. The water chemistry of Subglacial Lake Whillans was dominated by weathering products from silicate minerals with a minor influence from seawater. Contributions to water chemistry from microbial sulfide oxidation and carbonation reactions were supported by genomic data. Collectively, these results provide unequivocal evidence that subglacial environments in this region of West Antarctica host active microbial ecosystems that participate in subglacial biogeochemical cycling
    • 

    corecore