49 research outputs found

    Influence of Sociodemographic, Premorbid, and Injury-Related Factors on Post-Concussion Symptoms after Traumatic Brain Injury

    Get PDF
    Background: Post-concussion symptoms (PCS) are often reported as consequences of mild and moderate traumatic brain injury (TBI), but these symptoms are not well documented in severe TBI. There is a lack of agreement as to which factors and covariates affect the occurrence, frequency, and intensity of PCS among TBI severity groups. The present study therefore aims to examine the association between sociodemographic, premorbid, and injury-related factors and PCS. Methods: A total of 1391 individuals (65% male) from the CENTER-TBI study were included in the analyses. The occurrence, frequency (number of PCS), and intensity (severity) of PCS were assessed using the Rivermead Post-concussion Symptoms Questionnaire (RPQ) at six months after TBI. To examine the association between selected factors (age, sex, living situation, employment status, educational background, injury and TBI severity, and premorbid problems) and PCS, a zero-inflated negative binomial model (ZINB) for occurrence and frequency of PCS and a standard negative binomial regression (NB) for intensity were applied. Results: Of the total sample, 72% of individuals after TBI reported suffering from some form of PCS, with fatigue being the most frequent among all TBI severity groups, followed by forgetfulness, and poor concentration. Different factors contributed to the probability of occurrence, frequency, and intensity of PCS. While the occurrence of PCS seemed to be independent of the age and sex of the individuals, both the frequency and intensity of PCS are associated with them. Both injury and TBI severity influence the occurrence and frequency of PCS, but are associated less with its intensity (except "acute" symptoms such as nausea, vomiting, and headaches). Analyses focusing on the mTBI subgroup only yielded results comparable to those of the total sample. Discussion: In line with previous studies, the results support a multifactorial etiology of PCS and show the importance of differentiating between their occurrence, frequency, and intensity to better provide appropriate treatment for individual subgroups with different symptoms (e.g., multiple PCS or more intense PCS). Although PCS often occur in mild to moderate TBI, individuals after severe TBI also suffer from PCS or post-concussion-like symptoms that require appropriate treatment. The chosen statistical approaches (i.e., ZINB and NB models) permit an ameliorated differentiation between outcomes (occurrence, frequency, and intensity of PCS) and should be used more widely in TBI research

    External validation of prognostic models predicting outcome after chronic subdural hematoma

    Get PDF
    Background: Several prognostic models for outcomes after chronic subdural hematoma (CSDH) treatment have been published in recent years. However, these models are not sufficiently validated for use in daily clinical practice. We aimed to assess the performance of existing prediction models for outcomes in patients diagnosed with CSDH. Methods: We systematically searched relevant literature databases up to February 2021 to identify prognostic models for outcome prediction in patients diagnosed with CSDH. For the external validation of prognostic models, we used a retrospective database, containing data of 2384 patients from three Dutch regions. Prognostic models were included if they predicted either mortality, hematoma recurrence, functional outcome, or quality of life. Models were excluded when predictors were absent in our database or available for < 150 patients in our database. We assessed calibration, and discrimination (quantified by the concordance index C) of the included prognostic models in our retrospective database. Results: We identified 1680 original publications of which 1656 were excluded based on title or abstract, mostly because they did not concern CSDH or did not define a prognostic model. Out of 18 identified models, three could be externally validated in our retrospective database: a model for 30-day mortality in 1656 patients, a model for 2 months, and another for 3-month hematoma recurrence both in 1733 patients. The models overestimated the proportion of patients with these outcomes by 11% (15% predicted vs. 4% observed), 1% (10% vs. 9%), and 2% (11% vs. 9%), respectively. Their discriminative ability was poor to modest (C of 0.70 [0.63–0.77]; 0.46 [0.35–0.56]; 0.59 [0.51–0.66], respectively). Conclusions: None of the examined models showed good predictive performance for outcomes after CSDH treatment in our dataset. This study confirms the difficulty in predicting outcomes after CSDH and emphasizes the heterogeneity of CSDH patients. The importance of developing high-quality models by using unified predictors and relevant outcome measures and appropriate modeling strategies is warranted

    Prediction of global functional outcome and post-concussive symptoms after mild Traumatic Brain Injury: external validation of prognostic models in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study

    Get PDF
    The majority of traumatic brain injuries (TBIs) are categorized as mild, according to a baseline Glasgow Coma Scale (GCS) score of 13-15. Prognostic models that were developed to predict functional outcome and persistent post-concussive symptoms (PPCS) after mild TBI have rarely been externally validated. We aimed to externally validate models predicting 3-12-month Glasgow Outcome Scale Extended (GOSE) or PPCS in adults with mild TBI. We analyzed data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) project, which included 2862 adults with mild TBI, with 6-month GOSE available for 2374 and Rivermead Post-Concussion Symptoms Questionnaire (RPQ) results available for 1605 participants. Model performance was evaluated based on calibration (graphically and characterized by slope and intercept) and discrimination (C-index). We validated five published models for 6-month GOSE and three for 6-month PPCS scores. The models used different cutoffs for outcome and some included symptoms measured 2 weeks post-injury. Discriminative ability varied substantially (C-index between 0.58 and 0.79). The models developed in the Corticosteroid Randomisation After Significant Head Injury (CRASH) trial for prediction of GOSE <5 discriminated best (C-index 0.78 and 0.79), but were poorly calibrated. The best performing models for PPCS included 2-week symptoms (C-index 0.75 and 0.76). In conclusion, none of the prognostic models for early prediction of GOSE and PPCS has both good calibration and discrimination in persons with mild TBI. In future studies, prognostic models should be tailored to the population with mild TBI, predicting relevant end-points based on readily available predictors.Analysis and support of clinical decision makingDevelopment and application of statistical models for medical scientific researc

    Extended Coagulation Profiling in Isolated Traumatic Brain Injury:A CENTER-TBI Analysis

    Get PDF
    Background: Trauma-induced coagulopathy in traumatic brain injury (TBI) remains associated with high rates of complications, unfavorable outcomes, and mortality. The underlying mechanisms are largely unknown. Embedded in the prospective multinational Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, coagulation profiles beyond standard conventional coagulation assays were assessed in patients with isolated TBI within the very early hours of injury. Methods: Results from blood samples (citrate/EDTA) obtained on hospital admission were matched with clinical and routine laboratory data of patients with TBI captured in the CENTER-TBI central database. To minimize confounding factors, patients with strictly isolated TBI (iTBI) (n = 88) were selected and stratified for coagulopathy by routine international normalized ratio (INR): (1) INR &lt; 1.2 and (2) INR ≥ 1.2. An INR &gt; 1.2 has been well adopted over time as a threshold to define trauma-related coagulopathy in general trauma populations. The following parameters were evaluated: quick’s value, activated partial thromboplastin time, fibrinogen, thrombin time, antithrombin, coagulation factor activity of factors V, VIII, IX, and XIII, protein C and S, plasminogen, D-dimer, fibrinolysis-regulating parameters (thrombin activatable fibrinolysis inhibitor, plasminogen activator inhibitor 1, antiplasmin), thrombin generation, and fibrin monomers. Results: Patients with iTBI with INR ≥ 1.2 (n = 16) had a high incidence of progressive intracranial hemorrhage associated with increased mortality and unfavorable outcome compared with patients with INR &lt; 1.2 (n = 72). Activity of coagulation factors V, VIII, IX, and XIII dropped on average by 15–20% between the groups whereas protein C and S levels dropped by 20%. With an elevated INR, thrombin generation decreased, as reflected by lower peak height and endogenous thrombin potential (ETP), whereas the amount of fibrin monomers increased. Plasminogen activity significantly decreased from 89% in patients with INR &lt; 1.2 to 76% in patients with INR ≥ 1.2. Moreover, D-dimer levels significantly increased from a mean of 943 mg/L in patients with INR &lt; 1.2 to 1,301 mg/L in patients with INR ≥ 1.2. Conclusions: This more in-depth analysis beyond routine conventional coagulation assays suggests a counterbalanced regulation of coagulation and fibrinolysis in patients with iTBI with hemostatic abnormalities. We observed distinct patterns involving key pathways of the highly complex and dynamic coagulation system that offer windows of opportunity for further research. Whether the changes observed on factor levels may be relevant and explain the worse outcome or the more severe brain injuries by themselves remains speculative.</p

    Prediction of Global Functional Outcome and Post-Concussive Symptoms after Mild Traumatic Brain Injury: External Validation of Prognostic Models in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study

    Get PDF
    The majority of traumatic brain injuries (TBIs) are categorized as mild, according to a baseline Glasgow Coma Scale (GCS) score of 13-15. Prognostic models that were developed to predict functional outcome and persistent post-concussive symptoms (PPCS) after mild TBI have rarely been externally validated. We aimed to externally validate models predicting 3-12-month Glasgow Outcome Scale Extended (GOSE) or PPCS in adu

    Rehabilitation and outcomes after complicated vs uncomplicated mild TBI:results from the CENTER-TBI study

    Get PDF
    Background: Despite existing guidelines for managing mild traumatic brain injury (mTBI), evidence-based treatments are still scarce and large-scale studies on the provision and impact of specific rehabilitation services are needed. This study aimed to describe the provision of rehabilitation to patients after complicated and uncomplicated mTBI and investigate factors associated with functional outcome, symptom burden, and TBI-specific health-related quality of life (HRQOL) up to six months after injury. Methods: Patients (n = 1379) with mTBI from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study who reported whether they received rehabilitation services during the first six months post-injury and who participated in outcome assessments were included. Functional outcome was measured with the Glasgow Outcome Scale – Extended (GOSE), symptom burden with the Rivermead Post Concussion Symptoms Questionnaire (RPQ), and HRQOL with the Quality of Life after Brain Injury – Overall Scale (QOLIBRI-OS). We examined whether transition of care (TOC) pathways, receiving rehabilitation services, sociodemographic (incl. geographic), premorbid, and injury-related factors were associated with outcomes using regression models. For easy comparison, we estimated ordinal regression models for all outcomes where the scores were classified based on quantiles. Results: Overall, 43% of patients with complicated and 20% with uncomplicated mTBI reported receiving rehabilitation services, primarily in physical and cognitive domains. Patients with complicated mTBI had lower functional level, higher symptom burden, and lower HRQOL compared to uncomplicated mTBI. Rehabilitation services at three or six months and a higher number of TOC were associated with unfavorable outcomes in all models, in addition to pre-morbid psychiatric problems. Being male and having more than 13 years of education was associated with more favorable outcomes. Sustaining major trauma was associated with unfavorable GOSE outcome, whereas living in Southern and Eastern European regions was associated with lower HRQOL. Conclusions: Patients with complicated mTBI reported more unfavorable outcomes and received rehabilitation services more frequently. Receiving rehabilitation services and higher number of care transitions were indicators of injury severity and associated with unfavorable outcomes. The findings should be interpreted carefully and validated in future studies as we applied a novel analytic approach. Trial registration: ClinicalTrials.gov NCT02210221.</p

    The burden of traumatic brain injury from low-energy falls among patients from 18 countries in the CENTER-TBI Registry: A comparative cohort study.

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is an important global public health burden, where those injured by high-energy transfer (e.g., road traffic collisions) are assumed to have more severe injury and are prioritised by emergency medical service trauma triage tools. However recent studies suggest an increasing TBI disease burden in older people injured through low-energy falls. We aimed to assess the prevalence of low-energy falls among patients presenting to hospital with TBI, and to compare their characteristics, care pathways, and outcomes to TBI caused by high-energy trauma. METHODS AND FINDINGS: We conducted a comparative cohort study utilising the CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in TBI) Registry, which recorded patient demographics, injury, care pathway, and acute care outcome data in 56 acute trauma receiving hospitals across 18 countries (17 countries in Europe and Israel). Patients presenting with TBI and indications for computed tomography (CT) brain scan between 2014 to 2018 were purposively sampled. The main study outcomes were (i) the prevalence of low-energy falls causing TBI within the overall cohort and (ii) comparisons of TBI patients injured by low-energy falls to TBI patients injured by high-energy transfer-in terms of demographic and injury characteristics, care pathways, and hospital mortality. In total, 22,782 eligible patients were enrolled, and study outcomes were analysed for 21,681 TBI patients with known injury mechanism; 40% (95% CI 39% to 41%) (8,622/21,681) of patients with TBI were injured by low-energy falls. Compared to 13,059 patients injured by high-energy transfer (HE cohort), the those injured through low-energy falls (LE cohort) were older (LE cohort, median 74 [IQR 56 to 84] years, versus HE cohort, median 42 [IQR 25 to 60] years; p < 0.001), more often female (LE cohort, 50% [95% CI 48% to 51%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001), more frequently taking pre-injury anticoagulants or/and platelet aggregation inhibitors (LE cohort, 44% [95% CI 42% to 45%], versus HE cohort, 13% [95% CI 11% to 14%]; p < 0.001), and less often presenting with moderately or severely impaired conscious level (LE cohort, 7.8% [95% CI 5.6% to 9.8%], versus HE cohort, 10% [95% CI 8.7% to 12%]; p < 0.001), but had similar in-hospital mortality (LE cohort, 6.3% [95% CI 4.2% to 8.3%], versus HE cohort, 7.0% [95% CI 5.3% to 8.6%]; p = 0.83). The CT brain scan traumatic abnormality rate was 3% lower in the LE cohort (LE cohort, 29% [95% CI 27% to 31%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001); individuals in the LE cohort were 50% less likely to receive critical care (LE cohort, 12% [95% CI 9.5% to 13%], versus HE cohort, 24% [95% CI 23% to 26%]; p < 0.001) or emergency interventions (LE cohort, 7.5% [95% CI 5.4% to 9.5%], versus HE cohort, 13% [95% CI 12% to 15%]; p < 0.001) than patients injured by high-energy transfer. The purposive sampling strategy and censorship of patient outcomes beyond hospital discharge are the main study limitations. CONCLUSIONS: We observed that patients sustaining TBI from low-energy falls are an important component of the TBI disease burden and a distinct demographic cohort; further, our findings suggest that energy transfer may not predict intracranial injury or acute care mortality in patients with TBI presenting to hospital. This suggests that factors beyond energy transfer level may be more relevant to prehospital and emergency department TBI triage in older people. A specific focus to improve prevention and care for patients sustaining TBI from low-energy falls is required.CENTER-TBI was supported by the European Union 7th Framework program (EC grant 602150), recipient A.I.R. Maas. Additional funding was obtained from the Hannelore Kohl Stiftung (Germany) - recipient A.I.R. Maas, from OneMind (USA) - recipient A.I.R. Maas and from Integra LifeSciences Corporation (USA) - recipient A.I.R. Maas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Tracheal intubation in traumatic brain injury: a multicentre prospective observational study

    Get PDF
    Background We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration NCT02210221

    Predictors of Access to Rehabilitation in the Year Following Traumatic Brain Injury : A European Prospective and Multicenter Study

    Get PDF
    Background Although rehabilitation is beneficial for individuals with traumatic brain injury (TBI), a significant proportion of them do not receive adequate rehabilitation after acute care. Objective Therefore, the goal of this prospective and multicenter study was to investigate predictors of access to rehabilitation in the year following injury in patients with TBI. Methods Data from a large European study (CENTER-TBI), including TBIs of all severities between December 2014 and December 2017 were used (N = 4498 patients). Participants were dichotomized into those who had and those who did not have access to rehabilitation in the year following TBI. Potential predictors included sociodemographic factors, psychoactive substance use, preinjury medical history, injury-related factors, and factors related to medical care, complications, and discharge. Results In the year following traumatic injury, 31.4% of patients received rehabilitation services. Access to rehabilitation was positively and significantly predicted by female sex (odds ratio [OR] = 1.50), increased number of years of education completed (OR = 1.05), living in Northern (OR = 1.62; reference: Western Europe) or Southern Europe (OR = 1.74), lower prehospital Glasgow Coma Scale score (OR = 1.03), higher Injury Severity Score (OR = 1.01), intracranial (OR = 1.33) and extracranial (OR = 1.99) surgery, and extracranial complication (OR = 1.75). On contrast, significant negative predictors were lack of preinjury employment (OR = 0.80), living in Central and Eastern Europe (OR = 0.42), and admission to hospital ward (OR = 0.47; reference: admission to intensive care unit) or direct discharge from emergency room (OR = 0.24). Conclusions Based on these findings, there is an urgent need to implement national and international guidelines and strategies for access to rehabilitation after TBI.Peer reviewe

    Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study

    Get PDF
    Background While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. Methods We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. Results Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). Conclusions Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care
    corecore