82 research outputs found

    The spectroscopic orbits and the geometrical configuration of the symbiotic binary AR Pavonis

    Get PDF
    We analyze optical and near infrared spectra of intermediate and high resolution of the eclipsing symbiotic system AR Pavonis. We have obtained the radial velocity curves for the red and the hot component from the M-giant absorption lines and from the wings of Halpha, H and He II4686 emission profiles, respectively. From the orbital elements we have derived the masses, Mgiant=2.5 and Mhot =1.0 solar masses, for the red giant and the hot component, respectively. We also present and discuss radial velocity patterns in the blue cF absorption spectrum as well as various emission lines. In particular, we confirm that the blue absorption lines are associated with the hot component. The radial velocity curve of the blue absorption system, however, does not track the hot companion's orbital motion in a straightforward way, and its departures from an expected circular orbit are particularly strong when the hot component is active. We suggest that the cF-type absorption system is formed in material streaming from the giant presumably in a region where the stream encounters an accretion disk or an extended envelope around the hot component. The broad emission wings originate from the inner accretion disk or the envelope around the hot star.We also suggest that the central absorption in H profiles is formed in a neutral portion of the cool giant's wind which is strongly concentrated towards the orbital plane. The nebula in AR Pav seems to be bounded by significant amount of neutral material in the orbital plane. The forbidden emission lines are probably formed in low density ionized regions extended in polar directions and/or the wind-wind interaction zone.Comment: 12 pages, 5 figures, accepted by A&

    Circumstellar environment of RX Puppis

    Get PDF
    The symbiotic Mira, RX Pup, shows long-term variations in its mean light level due to variable obscuration by circumstellar dust. The last increase in extinction towards the Mira, between 1995 and 2000, has been accompanied by large changes in the degree of polarization in the optical and red spectral range. The lack of any obvious associated changes in the position angle may indicate the polarization variations are driven by changes in the properties of the dust grains (e.g. variable quantity of dust and variable particle size distribution, due to dust grain formation and growth) rather than changes in the viewing geometry of the scattering region(s), e.g. due to the binary rotation.Comment: Paper presented at Torun 2000 conference on Post-AGB objects as a phase of stellar evolution; 8 pages, 3 figure

    Evolution of the symbiotic nova RX Puppis

    Get PDF
    We present and discuss a hundred year history of activity of the hot component of RX Pup based on optical photometry and spectroscopy. The outburst evolution of RX Pup resembles that of other symbiotic novae whereas at quiescence the hot component shows activity (high and low activity states) resembling that of symbiotic recurrent novae T CrB and RS Oph.Comment: To appear in in M. Hernanz, J. Jose, eds, Classical Novae Explosions, AIP; 5 pages, 2 figure

    Evolution of the symbiotic nova RX Puppis

    Get PDF
    We present and discuss a hundred year history of activity of the hot component of RX Pup based on optical photometry and spectroscopy. The outburst evolution of RX Pup resembles that of other symbiotic novae whereas at quiescence the hot component shows activity (high and low activity states) resembling that of symbiotic recurrent novae T CrB and RS Oph.Comment: To appear in in M. Hernanz, J. Jose, eds, Classical Novae Explosions, AIP; 5 pages, 2 figure

    Discovery of a Magnetic White Dwarf in the Symbiotic Binary Z Andromedae

    Get PDF
    We report the first result from our survey of rapid variability in symbiotic binaries: the discovery of a persistent oscillation at P=1682.6 +- 0.6 s in the optical emission from the prototype symbiotic, Z Andromedae. The oscillation was detected on all 8 occasions on which the source was observed over a timespan of nearly a year, making it the first such persistent periodic pulse found in a symbiotic binary. The amplitude was typically 2 - 5 mmag, and it was correlated with the optical brightness during a relatively small outburst of the system. The most natural explanation is that the oscillation arises from the rotation of an accreting, magnetic (B_S > 10^5 G) white dwarf. This discovery constrains the outburst mechanisms, since the oscillation emission region near the surface of the white dwarf was visible during the outburst.Comment: Accepted for publication in the Astrophysical Journal (6 pages, including 4 figures), LaTe

    IPHAS and the symbiotic stars. I. Selection method and first discoveries

    Full text link
    The study of symbiotic stars is essential to understand important aspects of stellar evolution in interacting binaries. Their observed population in the Galaxy is however poorly known, and is one to three orders of magnitudes smaller than the predicted population size. IPHAS, the INT Photometric Halpha survey of the Northern Galactic plane, gives us the opportunity to make a systematic, complete search for symbiotic stars in a magnitude-limited volume, and discover a significant number of new systems. A method of selecting candidate symbiotic stars by combining IPHAS and near-IR (2MASS) colours is presented. It allows us to distinguish symbiotic binaries from normal stars and most of the other types of Halpha emission line stars in the Galaxy. The only exception are T Tauri stars, which can however be recognized because of their concentration in star forming regions. Using these selection criteria, we discuss the classification of a list of 4338 IPHAS stars with Halpha in emission. 1500 to 2000 of them are likely to be Be stars. Among the remaining objects, 1183 fulfill our photometric constraints to be considered candidate symbiotic stars. The spectroscopic confirmation of three of these objects, which are the first new symbiotic stars discovered by IPHAS, proves the potential of the survey and selection method.Comment: Accepted for publication on Astronomy and Astrophysics. 12 pages, 8 figure
    corecore