61 research outputs found

    Sequence variations in rgpA and rgpB of Porphyromonas gingivalis in periodontitis

    No full text
    Objective: The aim of the present study was to determine sequence variations in the active centre of the Arg-X-specific protease encoding genes rgpA and rgpB of clinical Porphyromonas gingivalis isolates and to analyse their prevalence in periodontitis patients before and 3 months after mechanical periodontal therapy. Background: Genetic diversity at nucleotides 281, 283, 286 and 331 has been shown to result in amino acid substitutions in the catalytic domain of RgpA and RgpB that affect the substrate specificity and thus may influence the efficacy of Arg-X-protease specific inhibitors. Methods: Sequence analysis of rgpA and rgpB genes in clinical P. gingivalis strains isolated from subgingival plaque samples of 82 periodontitis patients before and 3 months after mechanical supra- and subgingival debridement was performed. Results: No specific variation within the rgpA sequence was observed. However, the rgpB sequence in the region of the active centre showed five different rgpB genotypes, which were named NYPN, NSSN, NSSK, NYPK and DYPN according to the derived amino acid substitution. Porphyromonas gingivalis genotype NYPN was detected in 27 patients (32.9%) before and in 8 patients (9.8%) after therapy, NSSN in 26 (31.7%) and 10 (12.2%), NSSK in 22 (26.8%) and 2 (2.4%), NYPK in 5 (6.2%) and 1 (1.2%), and DYPN in 1 patient (1.2%) and 0 patients (0%), respectively. Only one patient (1.2%) harboured two P. gingivalis rgpB genotypes (NSSK/NYPN) before treatment; these were no longer detected after therapy. Conclusion: The results indicate that five rgpB genotypes are maintained in natural populations of P. gingivalis. These data may be of importance with regard to the development of specific rgpB inhibitors. © Blackwell Munksgaard 2005.link_to_subscribed_fulltex

    Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli.

    Get PDF
    V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I
    • …
    corecore