42 research outputs found

    Erenumab in chronic migraine: Patient-reported outcomes in a randomized double-blind study.

    Get PDF
    OBJECTIVE: To determine the effect of erenumab, a human monoclonal antibody targeting the calcitonin gene-related peptide receptor, on health-related quality of life (HRQoL), headache impact, and disability in patients with chronic migraine (CM). METHODS: In this double-blind, placebo-controlled study, 667 adults with CM were randomized (3:2:2) to placebo or erenumab (70 or 140 mg monthly). Exploratory endpoints included migraine-specific HRQoL (Migraine-Specific Quality-of-Life Questionnaire [MSQ]), headache impact (Headache Impact Test-6 [HIT-6]), migraine-related disability (Migraine Disability Assessment [MIDAS] test), and pain interference (Patient-Reported Outcomes Measurement Information System [PROMIS] Pain Interference Scale short form 6b). RESULTS: Improvements were observed for all endpoints in both erenumab groups at month 3, with greater changes relative to placebo observed at month 1 for many outcomes. All 3 MSQ domains were improved from baseline with treatment differences for both doses exceeding minimally important differences established for MSQ-role function-restrictive (≥3.2) and MSQ-emotional functioning (≥7.5) and for MSQ-role function-preventive (≥4.5) for erenumab 140 mg. Changes from baseline in HIT-6 scores at month 3 were -5.6 for both doses vs -3.1 for placebo. MIDAS scores at month 3 improved by -19.4 days for 70 mg and -19.8 days for 140 mg vs -7.5 days for placebo. Individual-level minimally important difference was achieved by larger proportions of erenumab-treated participants than placebo for all MSQ domains and HIT-6. Lower proportions of erenumab-treated participants had MIDAS scores of severe (≥21) or very severe (≥41) or PROMIS scores ≥60 at month 3. CONCLUSIONS: Erenumab-treated patients with CM experienced clinically relevant improvements across a broad range of patient-reported outcomes. CLINICALTRIALSGOV IDENTIFIER: NCT02066415. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with CM, erenumab treatment improves HRQoL, headache impact, and disability

    Efficacy of Disease-Modifying Therapies in Relapsing Remitting Multiple Sclerosis: A Systematic Comparison

    Get PDF
    The treatment of relapsing-remitting multiple sclerosis (RRMS) has become more effective over the last decade with the advent of the currently available disease-modifying therapies (DMTs). Pivotal clinical studies differ in many characteristics, such that cross-comparisons of relative risk reductions are of limited value and can be misleading. Our objective was to compare the clinical efficacy of currently approved first-line DMTs in patients with RRMS, applying an evidence-based medicine approach. We reviewed all phase III pivotal trials of DMTs. Six clinical trials of Avonex®, Betaseron®, Copaxone®, Rebif® and Tysabri® in patients with RRMS were identified for analysis. Only randomized, placebo-controlled, double-blind studies were included. The clinical efficacy endpoints compared were: proportion of relapse-free patients at 1 and 2 years; annualized relapse rate at 2 years; proportion of progression-free patients at 2 years, and proportion of patients free of gadolinium-enhancing lesions at 1 year or 9 months. Based on these analyses, Betaseron, Rebif, and Tysabri show comparable effects, whereas for several endpoints Avonex or Copaxone did not significantly differ from placebo. In the absence of head-to-head studies for all products used to treat RRMS, it still may be possible to compare treatment effects by applying evidence-based medicine principles

    Efficacy and safety of erenumab in women with a history of menstrual migraine

    Get PDF
    Background We performed a post hoc, subgroup analysis of a phase 3, randomized, double-blind, placebo-controlled study of erenumab for prevention of episodic migraine (STRIVE) to determine the efficacy and safety of erenumab in women with self-reported menstrual migraine. Methods Patients received placebo, erenumab 70 mg, or erenumab 140 mg subcutaneously once monthly during the 6-month double-blind treatment phase of STRIVE. Women who reported history of menstrual migraine and who were = 50% reduction from baseline in MMD, and incidence of adverse events. Results Among 814 women enrolled in STRIVE, 232 (28.5%) reported a history of menstrual migraine and were 5, suggesting a high proportion of women with attacks outside of the 5-day perimenstrual window (2 days before and 3 days after the start of menstruation). Information on "migraine days" includes (and does not discriminate between) perimenstrual and intermenstrual migraine attacks. Between-group differences from placebo over months 4-6 for erenumab 70 mg and 140 mg were - 1.8 (P = 0.001) and - 2.1 (P = 50% reduction from baseline in MMD over months 4-6 were 2.2 (P = 0.024) and 2.8 (P = 0.002) times greater for erenumab 70 mg and 140 mg, respectively, than for placebo. Erenumab had an overall safety profile comparable to placebo. Conclusion Data from this subgroup analysis of women with menstrual migraine are consistent with data from the overall STRIVE episodic migraine population, supporting the efficacy and safety of erenumab in women who experience menstrual migraine. Trial registration: ClinicalTrials.gov, NCT02456740. Registered 28 May 2015

    Schwann cell caveolin-1 expression increases during myelination and decreases after axotomy

    Full text link
    The caveolins are a family of related proteins that form the structural framework of caveolae. They have been implicated in the regulation of signal transduction, cell cycle control, and cellular transport processes, particularly cholesterol trafficking. Caveolin-1 is expressed by a variety of cell types, including Schwann cells, although its expression is greatest in differentiated cell types, such as endothelial cells and adipocytes. In the present work, we characterize caveolin-1 expression both during rat sciatic nerve development and after axotomy. Schwann cells express little caveolin-1 on postnatal days 1 and 6. By P30, myelinating Schwann cells express caveolin-1, which is localized in the outer/abaxonal myelin membranes as well as intracellularly. After axotomy, Schwann cell caveolin-1 expression in the distal nerve stump decreases as Schwann cells revert to a premyelinating (p75-positive) phenotype; residual caveolin-1 within the nerve largely localizes to myelin debris and infiltrating macrophages. We speculate that caveolin-1 plays a role in the biology of myelinating Schwann cells. GLIA 38:191–199, 2002. © 2002 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35023/1/10063_ftp.pd

    Oligodendrocyte-myelin glycoprotein is present in lipid rafts and caveolin-1-enriched membranes

    Full text link
    The oligodendrocyte-myelin glycoprotein is a ligand of the neuronal Nogo receptor and a potent inhibitor of neurite outgrowth, but its physiological function remains to be elucidated. The oligodendrocyte-myelin glycoprotein is anchored solely in the outer leaflet of the plasma membrane via its glycosylphosphatidylinositol anchor, and through its leucine-rich repeat domain, it likely interacts with other proteins. In the present study, we compare its buoyancy and detergent solubility characteristics with those of other myelin proteins. Based on its detergent solubility profile and membrane fractionation using established ultracentrifugation procedures, we conclude that the oligodendrocyte-myelin glycoprotein is a lipid raft component that is closely associated with the axolemma. Moreover, it associates with caveolin-1 and caveolin-1-enriched membranes. We postulate that, by virtue of its concentration in lipid rafts and perhaps through interactions with caveolin-1, the oligodendrocyte-myelin glycoprotein may influence signaling pathways. © 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48768/1/20237_ftp.pd

    Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension

    Get PDF
    Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials

    Immunological Mechanism of Action and Clinical Profile of Disease-Modifying Treatments in Multiple Sclerosis

    Get PDF
    corecore