14 research outputs found

    Newtonian boreal forest ecology : The Scots pine ecosystem as an example

    Get PDF
    Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.Peer reviewe

    Trakeidien poikkileikkausdimensioiden ja puun viskoelastisuuden vaihtelu : laajuus ja kontroillointimenetelmät

    No full text
    Printing papers have been the main product of the Finnish paper industry. To improve properties and economy of printing papers, controlling of tracheid cross-sectional dimensions and wood viscoelasticity are examined in this study. Controlling is understood as any procedure which yields raw material classes with distinct properties and small internal variation. Tracheid cross-sectional dimensions, i.e., cell wall thickness and radial and tangential diameters can be controlled with methods such as sorting wood into pulpwood and sawmill chips, sorting of logs according to tree social status and fractionation of fibres. These control methods were analysed in this study with simulations, which were based on measured tracheid cross-sectional dimensions. A SilviScan device was used to measure the data set from five Norway spruce (Picea abies) and five Scots pine (Pinus sylvestris) trunks. The simulation results indicate that the sawmill chips and top pulpwood assortments have quite similar cross-sectional dimensions. Norway spruce and Scots pine are on average also relatively similar in their cross-sectional dimensions. The distributions of these species are somewhat different, but from a practical point of view, the differences are probably of minor importance. The controlling of tracheid cross-sectional dimensions can be done most efficiently with methods that can separate fibres into earlywood and latewood. Sorting of logs or partitioning of logs into juvenile and mature wood were markedly less efficient control methods than fractionation of fibres. Wood viscoelasticity affects energy consumption in mechanical pulping, and is thus an interesting control target when improving energy efficiency of the process. A literature study was made to evaluate the possibility of using viscoelasticity in controlling. The study indicates that there is considerable variation in viscoelastic properties within tree species, but unfortunately, the viscoelastic properties of important raw material lots such as top pulpwood or sawmill chips are not known. Viscoelastic properties of wood depend mainly on lignin, but also on microfibrillar angle, width of cellulose crystals and tracheid cross-sectional dimensions.Painopaperit ovat pitkään olleet suomen metsäteollisuuden päätuote. Tässä työssä tutkitaan painopapereiden ominaisuuksien ja taloudellisuuden parantamista trakeidien poikkileikkausdimensioita ja puun viskoelastisuutta kontrolloimalla. Kontrolloinnilla tarkoitetaan mitä tahansa prosessia tai menetelmää puuraaka-aineen jakamiseksi luokkiin, joiden ominaisuuksissa on merkittäviä eroja ja pieni sisäinen vaihtelu. Trakeidien poikkileikkausdimensioita, eli soluseinämän paksuutta sekä säteen ja tangentin suuntaisia läpimittoja, voidaan kontrolloida esimerkiksi lajittelemalla raaka-ainetta kuitupuuhun ja sahanhakkeeseen. Vastaavaa kontrollointia voidaan tehdä myös lajittelemalla tukkeja puun kokoluokan mukaan tai erottelemalla kuituja sellun keiton jälkeen. Näitä menetelmiä tutkittiin tässä työssä simulaatioiden avulla, jotka perustuivat mitattuihin trakeidien poikkileikkausdimensioihin. Mittaukset tehtiin viidestä kuusesta (Picea abies) ja viidestä männystä (Pinus sylvestris) SilviScan laitteella. Simulaatioiden mukaan sahanhakkeen ja latvakuitupuun poikkileikkausdimensiot ovat melko samanlaiset. Kuusen ja männyn poikkileikkausdimensiot ovat keskimäärin samanlaiset, mutta dimensioiden jakaumat poikkeavat hieman toisistaan. Käytännön kannalta jakaumien eroilla ei todennäköisesti ole suurta merkitystä. Trakeidien dimensioita voidaan kontrolloida tehokkaimmin menetelmillä, jotka erottelevat kuidut kevätpuuhun ja kesäpuuhun. Tukkien lajittelu tai tukin jakaminen nuorpuuhun ja aikuispuuhun olivat simulaatioiden mukaan huomattavasti tehottomampia menetelmiä. Puun viskoelastisuus vaikuttaa energiankulutukseen mekaanisessa massanvalmistuksessa, joten tavoiteltaessa massanvalmistuksen energiankulutuksen alentamista se on lupaava kontrolloitava suure. Viskoelastisuuden käyttöä kontrolloinnissa tutkittiin kirjallisuuskatsauksen avulla. Tutkimus osoittaa puuaineen viskoelastisissa ominaisuuksissa olevan laajaa vaihtelua puulajin sisällä, mutta valitettavasti sellaisten merkittävien raaka-aineluokkien kuten latvakuitupuun ja sahanhakkeen viskoelastisia ominaisuuksia ei tunneta. Puun viskoelastiset ominaisuudet riippuvat pääasiassa ligniinistä, mutta siihen vaikuttavat myös mikrofibrillikulma, selluloosakiteiden leveys ja trakeidien poikkileikkausdimensiot

    Optimising forest road planning to maximise the mobilisation of wood biomass resources in Northwest Russia

    No full text
    Forest accessibility is a key factor for the effective mobilisation and utilisation of wood biomass. Therefore, obtaining reliable and precise information is crucial concerning forest resources and the appropriate methods of transportation. The main objective of this study was to improve the methodological approaches to forest road planning to improve the transportation of wood biomass in Russia. The results from the present study into the theoretical optimal road density revealed the importance of economic feasibility and cost-effectiveness when considering expansion of the forest road network. Cost reduction could be achieved through effective operational planning, which should also incorporate the costs for harvesting, road construction and transportation. However, no clear evidence was found regarding the best strategy to apply. The construction of high-quality forest roads should be concentrated in the forests with the largest standing volumes. However, in the near term, extended two-step forest transportation with 6*6WD trucks on the lowest quality roads (e. g. the cheapest basic forest roads) will continue to be an important part of the supply chain; it may even be more cost-efficient to maintain and upgrade these roads to allow all-year-round access with ordinary 6* 4WD trucks rather than constructing new roads in these areas. Thus, zoning of the procurement area could be used for optimising forest road planning to maximise the mobilisation of wood biomass201

    Tracheid cross-sectional dimensions in Scots pine (Pinus sylvestris):distributions and comparison with Norway spruce (Picea abies)

    No full text
    Cell wall thickness and tracheid radial and tangential diameter are important characteristics in papermaking. These fibre cross-sectional dimensions affect paper properties such as light scattering, and tear and tensile indexes. In the authors’ previous article, the mean values and distributions of tracheid cross-sectional dimensions were obtained for Norway spruce (Picea abies). This article characterises the cross-sectional tracheid properties of Scots pine (Pinus sylvestris) using exactly the same methodology as in the previous study on Norway spruce, which enables the comparison between the tree species. The distributions for Scots pine cell wall thickness and tracheid radial diameter were similar: a narrow peak due to earlywood tracheids, and a wide peak due to latewood tracheids. The tangential diameter distributions for Scots pine were very similar in both earlywood and latewood, having one wide peak. Also, the distributions in whole stem, top pulpwood and sawmill chip assortments were quite similar. The differences between Scots pine and Norway spruce tracheid cross-sectional dimensions were fairly marginal. This is at least the case when comparing large tracheid populations, in which differences tend to even out. The situation may be different on a more detailed level of observation, for example, when individual annual rings in the different tree species are compared.</ja:p

    Trakeidien poikkileikkausdimensiot männyssä : jakaumia ja vertailu kuuseen

    No full text
    Seloste artikkelista: Havimo, M., Rikala, J., Sirviö, J. & Sipi, M. 2009. Tracheid cross-sectional dimensions in Scots pine (Pinus sylvestris) – distributions and comparison with Norway spruce (Picea abies). Silva Fennica 43 (4) : 681–688

    Trakeidien poikkileikkausdimensioiden jakaumia kuusen rungon eri osissa

    No full text
    TutkimusselosteSeloste artikkelista: Havimo, M., Rikala, J., Sirviö, J. & Sipi, M. 2008.. Distributions of tracheid cross-sectional dimensions in different parts of Norway spruce stems. Silva Fennica 42(1): 89–99

    Predicted and measured height and diameter for first and fourth size classes.

    No full text
    <p>The first two rows (A–B) are from the stands near SMEAR II and the following ones (C–D) from the Estonian stands.The stand number 5, (<i>Vaccinium</i> type site, 4400 stems ha<sup>–1</sup>) had the poorest fit near SMEARII and stand number 3 (<i>Myrtillus</i> type site, 2000 stems ha<sup>–1</sup>) the best fit. In Estonia, Vihterpalu 2 had the poorest fit and Järvselja the best fit.</p
    corecore