155 research outputs found

    Million years of Greenland Ice Sheet history recorded in ocean sediments

    Get PDF
    Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both in the Southern and the Northern hemispheres since Eocene times, approximately since 45 Ma. In this paper focussing on Greenland we mainly use the occurrences of coarse ice-rafted debris (IRD) in Quaternary and Tertiary ocean sediment cores to conclude on age and origin of the glaciers/ice sheets, which once produced the icebergs transporting this material into the adjacent ocean. Deep-sea sediment cores with their records of ice-rafting from off NE Greenland, Fram Strait and to the south of Greenland suggest the more or less continuous existence of the Greenland ice sheet since 18 Ma, maybe much longer, and hence far beyond the stratigraphic extent of the Greenland ice cores. The timing of onset of glaciation on Greenland and whether it has been glaciated continuously since, are wide open questions of its long-term history. We also urgently need new scientific drilling programs in the waters around Greenland, in particular in the segment of the Arctic Ocean to the north of Greenland

    Comparison between experiments and Large-Eddy Simulations of tip spiral structure and geometry

    Get PDF
    International audienceResults from Large-Eddy Simulations using the actuator line technique have been validated against experimental results. The experimental rotor wake, which forms the basis for the comparison, was studied in a recirculating free-surface water channel, where a helical vortex was generated by a single-bladed rotor mounted on a shaft. An investigation of how the experimental blade geometry and aerofoil characteristics affect the results was performed. Based on this, an adjustment of the pitch setting was introduced, which is still well within the limits of the experimental uncertainty. Excellent agreement between the experimental and the numerical results was achieved concerning the circulation, wake expansion and pitch of the helical tip vortex. A disagreement was found regarding the root vortex position and the axial velocity along the centre line of the tip vortex. This work establishes a good base for further studies of more fundamental stability parameters of helical rotor wakes

    Mutual inductance instability of the tip vortices behind a wind turbine

    Get PDF
    Two modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tj ae reborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral triggers instabilities, leading to breakdown of the wake. Based on the grid configurations and the type of excitations, two basic flow cases, symmetric and asymmetric, are identified. In the symmetric setup, we impose a 120 degrees symmetry condition in the dynamics of the flow and in the asymmetric setup we calculate the full 360 degrees wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific frequencies and spatial structures, e.g. two dominant groups of modes with positive growth (spatial structures) are identified, while breaking the symmetry reveals that almost all the modes have positive growth rate. In both setups, the most unstable modes have a non-dimensional spatial growth rate close to pi/2 and they are characterized by an out-of-phase displacement of successive helix turns leading to local vortex pairing. The present results indicate that the asymmetric case is crucial to study, as the stability characteristics of the flow change significantly compared to the symmetric configurations. Based on the constant non-dimensional growth rate of disturbances, we derive a new analytical relationship between the length of the wake up to the turbulent breakdown and the operating conditions of a wind turbine

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore