16 research outputs found
A New Powerful Method for Site-Specific Transgene Stabilization Based on Chromosomal Double-Strand Break Repair
Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB) into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA) pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms
Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline
Silencing of genomic repeats, including transposable elements, in Drosophila melanogaster is mediated by repeat-associated short interfering RNAs (rasiRNAs) interacting with proteins of the Piwi subfamily. rasiRNA-based silencing is thought to be mechanistically distinct from both the RNA interference and microRNA pathways. We show that the amount of rasiRNAs of a wide range of retroelements is drastically reduced in ovaries and testes of flies carrying a mutation in the spn-E gene. To address the mechanism of rasiRNA-dependent silencing of retrotransposons, we monitored their chromatin state in ovaries and somatic tissues. This revealed that the spn-E mutation causes chromatin opening of retroelements in ovaries, resulting in an increase in histone H3 K4 dimethylation and a decrease in histone H3 K9 di/trimethylation. The strongest chromatin changes have been detected for telomeric HeT-A elements that correlates with the most dramatic increase of their transcript level, compared to other mobile elements. The spn-E mutation also causes depletion of HP1 content in the chromatin of transposable elements, especially along HeT-A arrays. We also show that mutations in the genes controlling the rasiRNA pathway cause no derepression of the same retrotransposons in somatic tissues. Our results provide evidence that germinal Piwi-associated short RNAs induce chromatin modifications of their targets
Heterochromatin Protein 1 Is Involved in Control of Telomere Elongation in Drosophila melanogaster
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster
Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline
Telomeres in Drosophila are maintained by transposition of specialized telomeric retroelements HeT-A, TAHRE, and TART instead of the short DNA repeats generated by telomerase in other eukaryotes. Here we implicate the RNA interference machinery in the control of Drosophila telomere length in ovaries. The abundance of telomeric retroelement transcripts is up-regulated owing to mutations in the spn-E and aub genes, encoding a putative RNA helicase and protein of the Argonaute family, respectively, which are related to the RNA interference (RNAi) machinery. These mutations cause an increase in the frequency of telomeric element retrotransposition to a broken chromosome end. spn-E mutations eliminate HeT-A and TART short RNAs in ovaries, suggesting an RNAi-based mechanism in the control of telomere maintenance in the Drosophila germline. Enhanced frequency of TART, but not HeT-A, attachments in individuals carrying one dose of mutant spn-E or aub alleles suggests that TART is a primary target of the RNAi machinery. At the same time, we detected enhanced HeT-A attachments to broken chromosome ends in oocytes from homozygous spn-E mutants. Double-stranded RNA (dsRNA)-mediated control of telomeric retroelement transposition may occur at premeiotic stages, resulting in the maintenance of appropriate telomere length in gamete precursors
Pairing between gypsy Insulators Facilitates the Enhancer Action in trans throughout the Drosophila Genome
The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome
Genetic Dissection Reveals the Role of Ash1 Domains in Counteracting Polycomb Repression
Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo