67 research outputs found

    Vector circuit theory for spatially dispersive uniaxial magneto-dielectric slabs

    Full text link
    We present a general dyadic vector circuit formalism, applicable for uniaxial magneto-dielectric slabs, with strong spatial dispersion explicitly taken into account. This formalism extends the vector circuit theory, previously introduced only for isotropic and chiral slabs. Here we assume that the problem geometry imposes strong spatial dispersion only in the plane, parallel to the slab interfaces. The difference arising from taking into account spatial dispersion along the normal to the interface is briefly discussed. We derive general dyadic impedance and admittance matrices, and calculate corresponding transmission and reflection coefficients for arbitrary plane wave incidence. As a practical example, we consider a metamaterial slab built of conducting wires and split-ring resonators, and show that neglecting spatial dispersion and uniaxial nature in this structure leads to dramatic errors in calculation of transmission characteristics.Comment: 11 pages, 6 figures, submitted to Journal of Electromagnetic Waves and Application

    Isolation of Specific Clones from Nonarrayed BAC Libraries through Homologous Recombination

    Get PDF
    We have developed a new approach to screen bacterial artificial chromosome (BAC) libraries by recombination selection. To test this method, we constructed an orangutan BAC library using an E. coli strain (DY380) with temperature inducible homologous recombination (HR) capability. We amplified one library segment, induced HR at 42°C to make it recombination proficient, and prepared electrocompetent cells for transformation with a kanamycin cassette to target sequences in the orangutan genome through terminal recombineering homologies. Kanamycin-resistant colonies were tested for the presence of BACs containing the targeted genes by the use of a PCR-assay to confirm the presence of the kanamycin insertion. The results indicate that this is an effective approach for screening clones. The advantage of recombination screening is that it avoids the high costs associated with the preparation, screening, and archival storage of arrayed BAC libraries. In addition, the screening can be conceivably combined with genetic engineering to create knockout and reporter constructs for functional studies

    A pair of gametologous genes provides further insights into avian comparative cytogenomics

    Get PDF
    Exploration of avian gametologous genes, i.e., homologous genes located on both the Z and W chromosomes, provides a crucial information about the underlying mechanism pertaining to the evolution of these chromosomes. The domestic chicken (Gallus gallus (Linnaeus 1758); GGA) traditionally serves as the primary reference subject of these comparative cytogenomic studies. Using bioinformatic, molecular (overgo BAC library scanning), and cytogenetic (BAC-based FISH) techniques, we have investigated in detail a pair of UBE2R2/UBE2R2L gametologs. By screening a gridded genomic jungle fowl BAC library, CHORI-261, with a short labeled UBE2R2L gene fragment called overgo probe, we detected seven specific clones. For three of them, CH261-019I23, CH261-105E16, and CH261-114G22, we identified their precise cytogenetic location on the Gallus gallus W chromosome (GGAW). They also co-localized with the UBAP2L2 gene on the, as was shown previously, along with the CH261-053P09 BAC clone also containing the GGAW-specific UBE2R2L DNA sequence. The fine mapping of the UBE2R2/UBE2R2L homologs in the chicken genome also shed the light on comparative cytogenetic aspects in birds. Our findings provided further evidence that bird genomes moderately changed only during evolution and are suitable for successful use of interspecies hybridization using both overgo-based BAC library screen and BAC-based FISH

    Correction to: A pair of gametologous genes provides further insights into avian comparative cytogenomics

    Get PDF
    Biologia https://doi.org/10.1007/s11756-023-01395-6 The original article has been updated to reflect added changes in the list of references. The original article has been corrected

    The mammalian gene function resource: the International Knockout Mouse Consortium.

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    The mammalian gene function resource: The International Knockout Mouse Consortium

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research
    • 

    corecore