24 research outputs found

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Elevating Science Communication: Build a Better Poster Workshop

    No full text
    &lt;p&gt;NASA's Transform to Open Science (TOPS) Special Topic Webinar with Dr. Mike Morrison, founder of #BetterPoster Movement. Dr. Morrison will lead an engaging virtual session with a distinctive approach to science communication using evidence-based design principles. This event is open to the public, so spread the word and be a part of this transformative conversation.&lt;/p&gt

    MegaMIR: The Megapixel Mid-Infrared Instrument for the Large Binocular Telescope Interferometer

    No full text
    The Megapixel Mid-infrared Instrument (MegaMIR) is a proposed Fizeau-mode camera for the Large Binocular Telescope operating at wavelengths between 5 and 28 micrometers. The camera will be used in conjunction with the Large Binocular Telescope Interferometer (LBTI), a cryogenic optical system that combines the beams from twin 8.4-m telescopes in a phase coherent manner. Unlike other interferometric systems, the co-mounted telescopes on the LBT satisfy the sine condition, providing diffraction-limited resolution over the 40" field of view of the camera. With a 22.8-m baseline, MegaMIR will yield 0.1" angular resolution, making it the highest resolution wide field imager in the thermal infrared for at least the next decade. MegaMIR will utilize a newly developed 1024 x 1024 pixel Si:As detector array that has been optimized for use at high backgrounds. This new detector is a derivative of the Wide-field Infrared Survey Explorer (WISE) low-background detector. The combination of high angular resolution and wide field imaging will be a unique scientific capability for astronomy. Key benefits will be realized in planetary science, galactic, and extra-galactic astronomy. High angular resolution is essential to disentangle highly complex sources, particularly in star formation regions and external galaxies, and MegaMIR provides this performance over a full field of view. Because of the great impact being made by space observatories like the Spitzer Space Telescope, the number of available targets for study has greatly increased in recent years, and MegaMIR will allow efficient follow up science

    Application of Ontology Translation

    No full text
    Abstract. An ontology provides a precise specification of the vocabulary used by a community of interest (COI). Multiple communities of interest may describe the same concept using the same or different terms. When such communities interact, ontology alignment and translation is required. This is typically a time consuming process. This paper describes Snoggle, an open source tool designed to ease development of ontology translation rules, and discusses its application to geospatial ontologies

    Theory of Operation: The Energy Monitoring and Management System

    No full text
    There exists a problem in places where power is provided by a limited source, such as solar energy. There is no way to regulate the power consumption of its users. With no regulation, users can use an excess amount of power from the energy grid causing a depletion, or power outage, for the rest of those connected to the grid. The goal of this project is to design and implement a reliable, manufacturable, and expandable system to measure, display, and limit energy usage of a home or other facility. We are in Phase 4 of our project meaning there is a need to supply a functional and reliable modular meter to our client without focusing on unneeded additions at the moment. With this said, we first started with testing the results of our PCB changes made last semester. Then we had started working on using switching between the high and low frequency outputs of the energy metering IC to increase our accuracy. However, due to results found from both these goals and past issues with the power sensing, we decided to redesign the Power Sense Board utilizing waveform output for power measurement and pulse output for energy measurement. In addition, we concluded tests from the previous semester as well as creating test procedures for our design and manufacturing. To improve our testing, we created a long-term testing applet to automatically log data from our meter and our “gold standard” EKM meter. Finally, we increased efficiency of our user interface box manufacturing by creating a new process involving the CNC machine. Our project is developing our documentation for our detailed meter design and are in the process of completing this section of the project report as time allows

    A New Large-Well 1024x1024 Si:As Detector for the Mid-Infrared

    No full text
    We present a description of a new 1024x1024 Si:As array designed for ground-based use from 5 - 28 microns. With a maximum well depth of 5e6 electrons, this device brings large-format array technology to bear on ground-based mid-infrared programs, allowing entry to the mega-pixel realm previously only accessible to the near-IR. The multiplexer design features switchable gain, a 256x256 windowing mode for extremely bright sources, and it is two-edge buttable. The device is currently in its final design phase at DRS in Cypress, CA. We anticipate completion of the foundry run in October 2005. This new array will enable wide field, high angular resolution ground-based follow up of targets found by space-based missions such as the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE)

    Time series observations with the mid-infrared instrument (MIRI) on JWST

    No full text
    Time-variable phenomena such as transiting exoplanets will be a major science theme for the James Webb Space Telescope (JWST). For Guaranteed Time and Early Release Science Observations, over 500 hours of JWST time have been allocated to time series observations (TSOs) of transiting exoplanets. Several dedicated observing modes are available in the instrument suite, whose operations are specifically tailored to these challenging observations. MIRI, the only JWST instrument covering the wavelength range longwards of 5 mu m on JWST, will offer TSOs in two of its modes: the low resolution spectrometer, and the imager. In this paper we will describe these modes for MIRI, and discuss how they differ operationally from regular (non-TSO) observations. We will show performance estimates based on ground testing and modeling, discuss the most relevant detector effects for high precision (spectro-)photometry, and provide some guidelines for planning MIRI TSOs.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The nature of the molybdenum surface in iron molybdate. The active phase in selective methanol oxidation

    Get PDF
    The surface structure of iron molybdate is of greatsignificance since this is the industrial catalyst for the direct selective oxidation of methanol to formaldehyde. There is a debate concerning whether Fe2(MoO4)3 acts as a benign support for segregated MoO3 or if there is an intrinsic property of the surface structure whichfacilitates its high catalytic efficacy. This study provides new insights into the structure of this catalyst, identifying a bound terminating layer of octahedral Mo units as the active and selective phase. Here we examine whether only 1 monolayer of Mo on iron oxide alone isefficacious for this reaction. For a 1 ML MoOx shell?Fe2O3 core catalyst the Mo remains at the surface under all calcination procedures while exhibiting high selectivity and activity. The work highlights how catalyst surfaces are significantly different from bulk structures and this difference is crucial for catalyst performance
    corecore