35 research outputs found

    Translating area-based conservation pledges into efficient biodiversity protection outcomes

    Get PDF
    Ambitious national and global pledges to protect increasing areas of land risk trading conservation effectiveness for convenience of designation. We show that UK conservation areas often lie outside the highest biodiversity priority landscapes, and that systematic conservation planning can improve site selection

    Conducting robust ecological analyses with climate data

    Get PDF
    Although the number of studies discerning the impact of climate change on ecological systems continues to increase, there has been relatively little sharing of the lessons learnt when accumulating this evidence. At a recent workshop entitled ‘Using climate data in ecological research’ held at the UK Met Office, ecologists and climate scientists came together to discuss the robust analysis of climate data in ecology. The discussions identified three common pitfalls encountered by ecologists: 1) selection of inappropriate spatial resolutions for analysis; 2) improper use of publically available data or code; and 3) insufficient representation of the uncertainties behind the adopted approach. Here, we discuss how these pitfalls can be avoided, before suggesting ways that both ecology and climate science can move forward. Our main recommendation is that ecologists and climate scientists collaborate more closely, on grant proposals and scientific publications, and informally through online media and workshops. More sharing of data and code (e.g. via online repositories), lessons and guidance would help to reconcile differing approaches to the robust handling of data. We call on ecologists to think critically about which aspects of the climate are relevant to their study system, and to acknowledge and actively explore uncertainty in all types of climate data. And we call on climate scientists to make simple estimates of uncertainty available to the wider research community. Through steps such as these, we will improve our ability to robustly attribute observed ecological changes to climate or other factors, while providing the sort of influential, comprehensive analyses that efforts to mitigate and adapt to climate change so urgently require

    Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns

    Get PDF
    We analysed trends in vegetation monitored at regular intervals over the past two decades (1993–2012)at the twelve terrestrial Environmental Change Network (ECN) sites. We sought to determine the extent to which flora had changed and link any such changes to potential environmental drivers. We observed significant increases in species richness, both at a whole network level, and when data were analysed within Broad Habitat groupings representing the open uplands, open lowlands and woodlands. We also found comparable increases in an indicator of vegetation response to soil pH, Ellenberg R. Species characteristic of less acid soils tended to show more consistent increases in frequency across sites relative to species with a known tolerance for strongly acidic soils. These changes are, therefore, broadly consistent with a response to increases in soil solution pH observed for the majority of ECN sites that, in turn, are likely to be driven by large reductions in acid deposition in recent decades. Increases in species richness in certain habitat groupings could also be linked to increased soil moisture availability in drier lowland sites that are likely to have been influenced by a trend towards wetter summers in recent years, and possibly also to a reduction in soil nitrogen availability in some upland locations. Changes in site management are also likely to have influenced trends at certain sites, particularly with respect to agricultural practices. Our results are therefore indicative of wide-scale responses to major regional-scale changes in air pollution and recent weather patterns, modified by local management effects. The relative consistency of management of ECN sites over time is atypical of much of the wider countryside and it is therefore not appropriate to scale up these observations to infer national scale trends. Nevertheless the results provide an important insight into processes that may be operating nationally. It will now be necessary to test for the ubiquity of these changes using appropriate broader spatial scale survey data

    Trends and variability in weather and atmospheric deposition at UK Environmental Change Network sites (1993–2012)

    Get PDF
    We characterised temporal trends and variability in key indicators of climate and atmospheric deposition chemistry at the twelve terrestrial UK Environmental Change Network (ECN) sites over the first two decades of ECN monitoring (1993–2012) using various statistical approaches. Mean air temperatures for the monitoring period were approximately 0.7 °C higher than those modelled for 1961–1990, but there was little evidence for significant change in air temperature over either the full monthly records or within individual seasons. Some upland ECN sites, however, warmed significantly over the first decade before cooling in the second. Summers at most sites became progressively wetter, and extremes in daily rainfall increased in magnitude. Average wind speeds in winter and spring declined at the majority of sites. Directional trends in summer precipitation could be linked to an atypically prolonged negative deviation in the summer North Atlantic Oscillation (NAO) Index. Several aspects of air quality improved markedly. Concentrations and fluxes of sulphate in precipitation declined significantly and substantially across the network, particularly during the earlier years and at the most polluted sites in the south and east. Precipitation concentrations of nitrate and ammonium, and atmospheric concentrations of nitrogen dioxide also decreased at most sites. There was less evidence for reductions in the loads of wet deposited nitrogen species, while trends in atmospheric ammonia concentration varied in direction and strength between sites. Reductions in acid deposition are likely to account for widespread gradual increases in the pH of soil water at ECN sites, representing partial recovery from acidification. Overall, therefore, ECN sites have experienced marked changes in atmospheric chemistry and weather regimes over the last two decades that might be expected to have exerted detectable effects on ecosystem structure and function. While the downward trend in acid deposition is unlikely to be reversed, it is too early to conclude whether the trend towards wetter summers simply represents a phase in a multi-decadal cycle, or is indicative of a more directional shift in climate. Conversely, the first two decades of ECN now provide a relatively stable long-term baseline with respect to air temperature, against which effects of anticipated future warming on these ecosystems should be able to be assessed robustly

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order
    corecore