578 research outputs found

    Interaction Between an Incident Wave and a Dynamically Transforming Inhomogeneity

    Get PDF
    Transformation-toughening of ceramics has attracted considerable attention [1,2,3] in recent years. The key mechanism in this toughening is the stress-induced phase transformation of the partially stabilized zirconia (PSZ) inhomogeneities, which accompanies volumetric expansion. Due to this expansion, the composite material consisting of PSZ inhomogeneities in a brittle matrix becomes more resistant to fracturing. While this problem has been studied for guasi-static loadings [4,5], the corresponding dynamic case has remained relatively unexplored

    Lesson plans for the study of civics:Focusing on asking questions

    Get PDF
    指導法・実践報

    Multilayer gas cells for sub-Doppler spectroscopy

    Full text link
    We have carried out theoretical research on ultra-high resolution spectroscopy of atoms (or molecules) in the suggested cell with a series of plane-parallel thin gas layers between spatially separated gas regions of this cell for optical pumping and probing. It is shown the effective velocity selection of optically pumped atoms because of their specific transit time and collisional relaxation in such a cell, which lead to narrow sub-Doppler resonances in absorption of the probe monochromatic light beam. Resolution of this spectroscopic method is analyzed in cases of stationary and definite nonstationary optical pumping of atoms by the broadband radiation versus geometrical parameters of given cells and pumping intensity. The suggested multilayer gas cell is the compact analog of many parallel atomic (molecular) beams and may be used also as the basis of new compact optical frequency standards of high accuracy.Comment: 12 pages, 4 figure

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated

    Quinoline Group Modified Carbon Nanotubes for the Detection of Zinc Ions

    Get PDF
    Carbon nanotubes (CNTs) were covalently modified by fluorescence ligand (glycine-N-8-quinolylamide) and formed a hybrid material which could be used as a selective probe for metal ions detection. The anchoring to the surface of the CNTs was carried out by the reaction between the precursor and the carboxyl groups available on the surface of the support. Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA) unambiguously proved the existence of covalent bonds between CNTs and functional ligands. Fluorescence characterization shows that the obtained organic–inorganic hybrid composite is highly selective and sensitive (0.2 μM) to Zn(II) detection

    Structural and magnetic diversity in alkali-metal Manganate chemistry : evaluating donor and alkali-metal effects in co-complexation processes

    Get PDF
    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [(KMn(CH2SiMe3)3C6H6)2] (2) and [(NaMn(CH2SiMe3)3)2(dioxane)7] (5); and to more complex supramolecular networks [(NaMn(CH2SiMe3)3)∞] (1) and [(Na2Mn2(CH2SiMe3)6(DABCO)2)∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [((dioxane)6K2Mn2(CH2SiMe3)4(O(CH2)2OCH=CH2)2)∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways
    corecore