1,496 research outputs found

    Winding number instability in the phase-turbulence regime of the Complex Ginzburg-Landau Equation

    Full text link
    We give a statistical characterization of states with nonzero winding number in the Phase Turbulence (PT) regime of the one-dimensional Complex Ginzburg-Landau equation. We find that states with winding number larger than a critical one are unstable, in the sense that they decay to states with smaller winding number. The transition from Phase to Defect Turbulence is interpreted as an ergodicity breaking transition which occurs when the range of stable winding numbers vanishes. Asymptotically stable states which are not spatio-temporally chaotic are described within the PT regime of nonzero winding number.Comment: 4 pages,REVTeX, including 4 Figures. Latex (or postscript) version with figures available at http://formentor.uib.es/~montagne/textos/nupt

    Dynamics of localized structures in vector waves

    Get PDF
    Dynamical properties of topological defects in a twodimensional complex vector field are considered. These objects naturally arise in the study of polarized transverse light waves. Dynamics is modeled by a Vector Complex Ginzburg-Landau Equation with parameter values appropriate for linearly polarized laser emission. Creation and annihilation processes, and selforganization of defects in lattice structures, are described. We find "glassy" configurations dominated by vectorial defects and a melting process associated to topological-charge unbinding.Comment: 4 pages, 5 figures included in the text. To appear in Phys. Rev. Lett. (2000). Related material at http://www.imedea.uib.es/Nonlinear and http://www.imedea.uib.es/Photonics . In this new version, Fig. 3 has been replaced by a better on

    Wound-up phase turbulence in the Complex Ginzburg-Landau equation

    Get PDF
    We consider phase turbulent regimes with nonzero winding number in the one-dimensional Complex Ginzburg-Landau equation. We find that phase turbulent states with winding number larger than a critical one are only transients and decay to states within a range of allowed winding numbers. The analogy with the Eckhaus instability for non-turbulent waves is stressed. The transition from phase to defect turbulence is interpreted as an ergodicity breaking transition which occurs when the range of allowed winding numbers vanishes. We explain the states reached at long times in terms of three basic states, namely quasiperiodic states, frozen turbulence states, and riding turbulence states. Justification and some insight into them is obtained from an analysis of a phase equation for nonzero winding number: rigidly moving solutions of this equation, which correspond to quasiperiodic and frozen turbulence states, are understood in terms of periodic and chaotic solutions of an associated system of ordinary differential equations. A short report of some of our results has been published in [Montagne et al., Phys. Rev. Lett. 77, 267 (1996)].Comment: 22 pages, 15 figures included. Uses subfigure.sty (included) and epsf.tex (not included). Related research in http://www.imedea.uib.es/Nonlinea

    Polymer materials derived from the SEAr reaction for gas separation applications

    Get PDF
    Producción CientíficaA set of linear polymers were synthesized utilizing an electrophilic aromatic substitution reaction (SEAr) between biphenyl and ketone containing electron-withdrawing groups (isatin, IS; N-methylisatin, MeIS; and 4,5-diazafluoren-9-one, DF). Optimization of the polycondensation reaction was made to obtain high molecular weight products when using DF, which has not previously been used for linear polymer synthesis. Due to the absence of chemically labile units, these polymers exhibited excellent chemical and thermal stability. Linear SEAr polymers were blended with porous polymer networks derived from IS and MeIS, and both neat/mixed materials were tested as membranes for gas separation. The gas separation properties of both pristine polymers and mixed matrix membranes were good, showing some polymer membrane CO2 permeability values higher than 200 barrer

    Interaction of Vortices in Complex Vector Field and Stability of a ``Vortex Molecule''

    Full text link
    We consider interaction of vortices in the vector complex Ginzburg--Landau equation (CVGLE). In the limit of small field coupling, it is found analytically that the interaction between well-separated defects in two different fields is long-range, in contrast to interaction between defects in the same field which falls off exponentially. In a certain region of parameters of CVGLE, we find stable rotating bound states of two defects -- a ``vortex molecule".Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Seguimiento del Grado en Óptica y Optometría

    Get PDF
    En el marco del proyecto de Redes de Investigación en Docencia Universitaria 2013-14 de la Universidad de Alicante se creó una red de trabajo formada por los profesores coordinadores de semestre del Grado en Óptica y Optometría y dos alumnos. Dado que durante el curso académico 2013-14 ha tenido lugar la implantación del último curso del Grado en Óptica y Optometría, el objetivo principal de esta red ha sido la realización de un análisis de la implantación del título así como el estudio del diseño y desarrollo del Trabajo Fin de Grado y del programa de Prácticas Externas. Para ello se han recogido las sugerencias y propuestas realizadas a través de las comisiones de semestres, de la comisión de garantía de calidad y de reuniones con el alumnado, con el fin de optimizar el funcionamiento del título, tanto en la distribución de contenidos, como en las metodologías docentes y de evaluación de las distintas materias que componen el plan de estudios

    Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators

    Get PDF
    Previous studies of lasers and nonlinear resonators have revealed that the polarisation degree of freedom allows for the formation of polarisation patterns and novel localized structures, such as vectorial defects. Type II optical parametric oscillators are characterised by the fact that the down-converted beams are emitted in orthogonal polarisations. In this paper we show the results of the study of pattern and defect formation and dynamics in a Type II degenerate optical parametric oscillator for which the pump field is not resonated in the cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations which appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation are formed. A dislocation is defined by two topological charges, one associated with the phase and another with the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation. The effects of phase mismatch of nonlinear interaction are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including movies, can be obtained from http://www.imedea.uib.es/Nonlinear/research_topics/OPO

    Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients

    Get PDF
    Multiple myeloma is a heterogeneous disease whose pathogenesis has not been completely elucidated. Although B-cell receptors play a crucial role in myeloma pathogenesis, the impact of clonal immunoglobulin heavy-chain features in the outcome has not been extensively explored. Here we present the characterization of complete heavy-chain gene rearrangements in 413 myeloma patients treated in Spanish trials, including 113 patients characterized by next-generation sequencing. Compared to the normal B-cell repertoire, gene selection was biased in myeloma, with significant overrepresentation of IGHV3, IGHD2 and IGHD3, as well as IGHJ4 gene groups. Hypermutation was high in our patients (median: 8.8%). Interestingly, regarding patients who are not candidates for transplantation, a high hypermutation rate (≥7%) and the use of IGHD2 and IGHD3 groups were associated with improved prognostic features and longer survival rates in the univariate analyses. Multivariate analysis revealed prolonged progression-free survival rates for patients using IGHD2/IGHD3 groups (HR: 0.552, 95% CI: 0.361−0.845, p = 0.006), as well as prolonged overall survival rates for patients with hypermutation ≥7% (HR: 0.291, 95% CI: 0.137−0.618, p = 0.001). Our results provide new insights into the molecular characterization of multiple myeloma, highlighting the need to evaluate some of these clonal rearrangement characteristics as new potential prognostic markers

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    The Complex Ginzburg-Landau Equation in the Presence of Walls and Corners

    Get PDF
    We investigate the influence of walls and corners (with Dirichlet and Neumann boundary conditions) in the evolution of twodimensional autooscillating fields described by the complex Ginzburg-Landau equation. Analytical solutions are found, and arguments provided, to show that Dirichlet walls introduce strong selection mechanisms for the wave pattern. Corners between walls provide additional synchronization mechanisms and associated selection criteria. The numerical results fit well with the theoretical predictions in the parameter range studied.Comment: 10 pages, 9 figures; for related work visit http://www.nbi.dk/~martine
    corecore