715 research outputs found

    Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Get PDF
    Background: Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods: We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). Results: We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion: While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes

    Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting

    Get PDF
    Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Impact of lenalidomide dose on progression-free survival in patients with relapsed or refractory multiple myeloma

    Get PDF
    This analysis assessed the effect of lenalidomide on progression-free survival (PFS). Patients with relapsed or refractory multiple myeloma (RRMM) who received lenalidomide plus dexamethasone in the MM-009 and MM-010 trials were pooled and those who had not progressed and were still receiving lenalidomide at 12 months were included. The median follow-up of surviving patients was 48 months. Of 353 patients who received lenalidomide plus dexamethasone, 116 (33%) had not progressed. Overall, 52 patients (45%) had no dose reductions, 25 (22%) had dose reductions ⩾12 months and 39 (34%) had dose reductions before 12 months. Patients who had dose reductions ⩾12 months had a significantly longer median PFS than those who had reductions before 12 months (P=0.007) or no dose reductions (P=0.039) (not reached vs 28.0 vs 36.8 months, respectively). In a multivariate Cox regression model, dose reduction ⩾12 months was an independent predictor of improved PFS (hazard ratio, 0.47; 95% confidence interval, 0.23–0.98) after adjusting for patient characteristics. The data suggest that to achieve maximum PFS benefit, patients with RRMM should be treated for ⩾12 months with full-dose lenalidomide plus dexamethasone. Thereafter, patients may benefit from lower-dose continued therapy; prospective studies are needed to confirm these findings

    Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses

    Get PDF
    Comparative studies between commercial Trichoderma reesei cellulase preparations show that, depending on the preparation and loading, total protein precipitation can be as high as 30 % under standard hydrolysis conditions used for lignocellulosic materials. ATR-IR and SDS-PAGE data verify precipitates are protein-based and contain key cell wall hydrolyzing enzymes. Precipitation increased considerably with incubation temperature; roughly 50–150 % increase from 40 to 50 °C and 800 % greater at 60 °C. All of the reported protein losses translated into significant, and often drastic, losses in activity on related 4-nitrophenyl substrates. In addition, supplementation with the non-ionic surfactant PEG 6,000 decreased precipitation up to 80 % in 24 h precipitation levels. Protein precipitation is potentially substantial during enzymatic hydrolysis of lignocelluloses and should be accounted for during lignocellulose conversion process design, particularly when enzyme recycling is considered.This work was supported by the project "Demonstrating Industrial scale second generation bioethaol production-Kalundborg Cellulosic Ethanol Plant" under the EU FP7 framework program and the project "Development of improved second generation (2G) bioethanol technology to prepare for commercialization under the Danish Energy Technology and Demonstration Programme (EUDP)

    Vernalization-Repression of Arabidopsis FLC Requires Promoter Sequences but Not Antisense Transcripts

    Get PDF
    The repression of Arabidopsis FLC expression by vernalization (extended cold) has become a model for understanding polycomb-associated epigenetic regulation in plants. Antisense and sense non-coding RNAs have been respectively implicated in initiation and maintenance of FLC repression by vernalization. We show that the promoter and first exon of the FLC gene are sufficient to initiate repression during vernalization; this initial repression of FLC does not require antisense transcription. Long-term maintenance of FLC repression requires additional regions of the gene body, including those encoding sense non-coding transcripts

    Effectiveness of Patient Adherence Groups as a Model of Care for Stable Patients on Antiretroviral Therapy in Khayelitsha, Cape Town, South Africa

    Get PDF
    Abstract: Background: Innovative models of care are required to cope with the ever-increasing number of patients on antiretroviral therapy in the most affected countries. This study, in Khayelitsha, South Africa, evaluates the effectiveness of a group-based model of care run predominantly by non-clinical staff in retaining patients in care and maintaining adherence. Methods and Findings: Participation in ‘‘adherence clubs’’ was offered to adults who had been on ART for at least 18 months, had a current CD4 count .200 cells/ml and were virologically suppressed. Embedded in an ongoing cohort study, we compared loss to care and virologic rebound in patients receiving the intervention with patients attending routine nurse-led care from November 2007 to February 2011. We used inverse probability weighting to estimate the intention-totreat effect of adherence club participation, adjusted for measured baseline and time-varying confounders. The principal outcome was the combination of death or loss to follow-up. The secondary outcome was virologic rebound in patients who were virologically suppressed at study entry. Of 2829 patients on ART for .18 months with a CD4 count above 200 cells/ml, 502 accepted club participation. At the end of the study, 97% of club patients remained in care compared with 85% of other patients. In adjusted analyses club participation reduced loss-to-care by 57% (hazard ratio [HR] 0.43, 95% CI = 0.21–0.91) and virologic rebound in patients who were initially suppressed by 67% (HR 0.33, 95% CI = 0.16–0.67). Discussion: Patient adherence groups were found to be an effective model for improving retention and documented virologic suppression for stable patients in long term ART care. Out-of-clinic group-based models facilitated by non-clinical staff are a promising approach to assist in the long-term management of people on ART in high burden low or middleincome settings

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown
    corecore