1,117 research outputs found

    Characteristics of the recirculation cell pattern in a lateral cavity

    Get PDF
    River hydrodynamicsInteraction with structure

    Acoustic stimulation time-locked to the beginning of sleep apnea events reduces oxygen desaturations: a pilot-study.

    Get PDF
    We aimed to determine whether bone-conducted acoustic stimulation could prematurely terminate sleep apnea events, thereby decreasing amplitude and duration of subsequent oxygen desaturation. As oxygen desaturation has been linked to cardiovascular consequences, we postulate this could be a viable therapy in some cases. Eight patients with severe Obstructive Sleep Apnea (2 women, 45 [20-68] y.o. Apnea-Hypopnea Index: 77.7 ± 22.3/h) underwent polysomnography at the Lausanne University Sleep Center. Short acoustic stimulations were administered by bone conduction every second event of sleep apnea. Sounds were remotely administered using a Dreem® headband worn by patients while undergoing nocturnal polysomnography. Amplitude (%) and duration(s) of oxygen desaturations following terminated apneas were compared to that of non-stimulated previous and subsequent events. 549 stimulations (68.6 ± 38 sounds per patient) in N1 (16.2%), N2 (69.9%), N3 (4.2%), and REM(9.6%) were conducted. Compared to the previous and subsequent non-stimulated apnea, stimulations reduced event duration by 21.4% (-3.4 ± 7.2 s, p < 0.0001) while oxygen desaturation amplitude and duration were reduced by 30.4% (mean absolute difference ± SD: -1.9 ± 2.8%, p < 0.0001), and 39.6% (-5.7 ± 9.2 s, p < 0.0001) respectively. For these variables, each patient showed a significant improvement following acoustic stimulation. Sound-associated discomfort was rated 1.14 ± 1.53 on an 8 points scale (8 = worst) and only 6.8% of emitted sounds were perceived by the patients, suggesting a well-tolerated intervention. Bone-conducted sound stimuli decreased apnea events duration as well as duration and amplitude of associated oxygen desaturations. Stimulations were well tolerated and rarely perceived by patients. This therapeutic approach deserves further investigation, with monitoring of effects on sleep quality, daytime function/sleepiness and cardiovascular parameters

    Pressure Evolution of the Magnetic Field induced Ferromagnetic Fluctuation through the Pseudo-Metamagnetism of CeRu2Si2

    Full text link
    Resistivity measurements performed under pressure in the paramagnetic ground state of CeRu2Si2 are reported. They demonstrate that the relative change of effective mass through the pseudo metamagnetic transition is invariant under pressure. The results are compared with the first order metamagnetic transition due to the antiferromagnetism of Ce0.9La0.1Ru2Si2 which corresponds to the "negative" pressure of CeRu2Si2 by volume expansion. Finally, we describe the link between the spin-depairing of quasiparticles on CeRu2Si2 and that of Cooper pairs on the unconventional heavy fermion superconductor CeCoIn5.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp

    Supercritical biharmonic equations with power-type nonlinearity

    Full text link
    The biharmonic supercritical equation Δ2u=up1u\Delta^2u=|u|^{p-1}u, where n>4n>4 and p>(n+4)/(n4)p>(n+4)/(n-4), is studied in the whole space Rn\mathbb{R}^n as well as in a modified form with λ(1+u)p\lambda(1+u)^p as right-hand-side with an additional eigenvalue parameter λ>0\lambda>0 in the unit ball, in the latter case together with Dirichlet boundary conditions. As for entire regular radial solutions we prove oscillatory behaviour around the explicitly known radial {\it singular} solution, provided p((n+4)/(n4),pc)p\in((n+4)/(n-4),p_c), where pc((n+4)/(n4),]p_c\in ((n+4)/(n-4),\infty] is a further critical exponent, which was introduced in a recent work by Gazzola and the second author. The third author proved already that these oscillations do not occur in the complementing case, where ppcp\ge p_c. Concerning the Dirichlet problem we prove existence of at least one singular solution with corresponding eigenvalue parameter. Moreover, for the extremal solution in the bifurcation diagram for this nonlinear biharmonic eigenvalue problem, we prove smoothness as long as p((n+4)/(n4),pc)p\in((n+4)/(n-4),p_c)

    Predicting Lung Deposition of Extrafine Inhaled Corticosteroid-Containing Fixed Combinations in Patients with Chronic Obstructive Pulmonary Disease Using Functional Respiratory Imaging: An in Silico Study

    Get PDF
    Background: Functional respiratory imaging (FRI) is a computational fluid dynamics-based technique using three-dimensional models of human lungs and formulation profiles to simulate aerosol deposition. Methods: FRI was used to evaluate lung deposition of extrafine beclomethasone dipropionate (BDP)/formoterol fumarate (FF)/glycopyrronium bromide (GB) and extrafine BDP/FF delivered through pressurized metered dose inhalers and to compare results with reference gamma scintigraphy data. FRI combined high-resolution computed tomography scans of 20 patients with moderate-to-severe chronic obstructive pulmonary disease (mean forced expiratory volume in 1 second 42% predicted) with in silico computational flow simulations, and incorporated drug delivery parameters to calculate aerosol airway deposition. Inhalation was simulated using profiles obtained from real-life measurements. Results: Total lung deposition (proportion deposited in intrathoracic region) was similarly high for both products, with mean ± standard deviation (SD) values of 31.0% ± 5.7% and 28.1% ± 5.2% (relative to nominal dose) for BDP/FF/GB and BDP/FF, respectively. Pairwise comparison of the deposition of BDP and FF gave a mean intrathoracic BDP/FF/GB:BDP/FF deposition ratio of 1.10 (p = 0.0405). Mean intrathoracic, central and peripheral deposition ratios for BDP were 1.09 (95% confidence interval [CI]: 1.05-1.14), 0.92 (95% CI: 0.89-0.96), and 1.20 (95% CI: 1.15-1.26), respectively, and for FF were 1.11 (95% CI: 1.07-1.15), 0.94 (95% CI: 0.91-0.98), and 1.21 (95% CI: 1.15-1.27), within the bioequivalence range (0.80-1.25) for intrathoracic and central regions, and slightly exceeding the upper boundary in the peripheral region. Mean ± SD central:peripheral deposition (C:P) was 0.48 ± 0.13 for BDP/FF/GB and 0.62 ± 0.17 for BDP/FF, indicating a higher proportion of drug deposition in the small airways than in the large airways. Conclusion: FRI demonstrated similar deposition patterns for extrafine BDP/FF/GB and BDP/FF, with both having a high lung deposition. Moreover, the deposition patterns of BDP and FF were similar in both products. Furthermore, the C:P ratios of both products indicated a high peripheral deposition, supporting small airway targeting and delivery of these two extrafine fixed combinations, with a small difference in ratios potentially due to mass median aerodynamic diameters

    Experiments and 3D simulations of flow structures in junctions and their influence on location of flowmeters

    Get PDF
    International audienceOpen-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3-dimensional, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims i) to measure and simulate the flow pattern in a junction flow, ii) to analyze the impact of the junction on the velocity distribution according to the distance from the junction and thus iii) to evaluate the typical error derived from the computation of the flow rate close to the junction

    Impact of climate change on surface stirring and transport in the Mediterranean Sea

    Get PDF
    Understanding how climate change will affect oceanic fluid transport is crucial for environmental applications and human activities. However, a synoptic characterization of the influence of climate change on mesoscale stirring and transport in the surface ocean is missing. To bridge this gap, we exploit a high-resolution, fully coupled climate model of the Mediterranean basin using a Network Theory approach. We project significant increases of horizontal stirring and kinetic energies in the next century, likely due to increments of available potential energy. The future evolution of basin-scale transport patterns hints at a rearrangement of the main hydrodynamic provinces, defined as regions of the surface ocean that are well mixed internally but with minimal cross-flow across their boundaries. This results in increased heterogeneity of province sizes and stronger mixing in their interiors. Our approach can be readily applied to other oceanic regions, providing information for the present and future marine spatial planning.En prensa3,79
    corecore