625 research outputs found

    Relativistic MHD Simulations of Jets with Toroidal Magnetic Fields

    Full text link
    This paper presents an application of the recent relativistic HLLC approximate Riemann solver by Mignone & Bodo to magnetized flows with vanishing normal component of the magnetic field. The numerical scheme is validated in two dimensions by investigating the propagation of axisymmetric jets with toroidal magnetic fields. The selected jet models show that the HLLC solver yields sharper resolution of contact and shear waves and better convergence properties over the traditional HLL approach.Comment: 12 pages, 5 figure

    TPCI: The PLUTO-CLOUDY Interface

    Full text link
    We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: The PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: First, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: Photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Stroemgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems.Comment: 13 pages, 10 figures, accepted for publication in A&

    TV-Centric technologies to provide remote areas with two-way satellite broadband access

    Get PDF
    October 1-2, 2007, Rome, Italy TV-Centric Technologies To Provide Remote Areas With Two-Way Satellite Broadband Acces

    A Multidimensional Relativistic Hydrodynamics Code with a General Equation of State

    Full text link
    The ideal gas equation of state with a constant adiabatic index, although commonly used in relativistic hydrodynamics, is a poor approximation for most relativistic astrophysical flows. Here we propose a new general equation of state for a multi-component relativistic gas which is consistent with the Synge equation of state for a relativistic perfect gas and is suitable for numerical (special) relativistic hydrodynamics. We also present a multidimensional relativistic hydrodynamics code incorporating the proposed general equation of state, based on the HLL scheme, which does not make use of a full characteristic decomposition of the relativistic hydrodynamic equations. The accuracy and robustness of this code is demonstrated in multidimensional calculations through several highly relativistic test problems taking into account nonvanishing tangential velocities. Results from three-dimensional simulations of relativistic jets show that the morphology and dynamics of the relativistic jets are significantly influenced by the different equation of state and by different compositions of relativistic perfect gases. Our new numerical code, combined with our proposed equation of state is very efficient and robust, and unlike previous codes, it gives very accurate results for thermodynamic variables in relativistic astrophysical flows.Comment: 32 pages, 9 figures, accepted by ApJ

    Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Get PDF
    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα\alpha emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.Comment: 22 pages, 24 figure

    The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution

    Get PDF
    The stability properties of one-dimensional radiative shocks with a power-law cooling function of the form Λ∝ρ2Tα\Lambda \propto \rho^2T^\alpha are the main subject of this work. The linear analysis originally presented by Chevalier & Imamura, is thoroughfully reviewed for several values of the cooling index α\alpha and higher overtone modes. Consistently with previous results, it is shown that the spectrum of the linear operator consists in a series of modes with increasing oscillation frequency. For each mode a critical value of the cooling index, αc\alpha_\textrm{c}, can be defined so that modes with α<αc\alpha < \alpha_\textrm{c} are unstable, while modes with α>αc\alpha > \alpha_\textrm{c} are stable. The perturbative analysis is complemented by several numerical simulations to follow the time-dependent evolution of the system for different values of α\alpha. Particular attention is given to the comparison between numerical and analytical results (during the early phases of the evolution) and to the role played by different boundary conditions. It is shown that an appropriate treatment of the lower boundary yields results that closely follow the predicted linear behavior. During the nonlinear regime, the shock oscillations saturate at a finite amplitude and tend to a quasi-periodic cycle. The modes of oscillations during this phase do not necessarily coincide with those predicted by linear theory, but may be accounted for by mode-mode coupling.Comment: 33 pages, 12 figures, accepted for publication on the Astrophysical Journa

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure

    MHD modeling of coronal loops: the transition region throat

    Get PDF
    The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. We study the area response with a time-dependent 2D MHD loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. We find that the area can change substantially with the quasi-steady heating rate, e.g. by ~40% at 0.5 MK as the loop temperature varies between 1 and 4 MK, and, therefore, affects the interpretation of DEM(T) curves.Comment: 9 pages, 5 figures, accepted for publicatio
    • 

    corecore