1,355 research outputs found

    The glucocorticoid PYED-1 disrupts mature biofilms of Candida spp. and inhibits hyphal development in Candida albicans

    Get PDF
    Invasive Candida infections have become a global public health problem due to the increase of Candida species resistant against antifungal therapeutics. The glucocorticoid PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) has antimicrobial activity against various bacterial taxa. Consequently, it might be considered for the treatment of Candida infections. The antifungal activity of PYED-1 was evaluated against several fungal strains that were representative of the five species that causes the majority of Candida infections—namely, Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and Candida krusei. PYED-1 exhibited a weak antifungal activity and a fungistatic effect on all five Candida species. On the other hand, PYED-1 exhibited a good antibiofilm activity, and was able to eradicate the preformed biofilms of all Candida species analyzed. Moreover, PYED-1 inhibited germ tube and hyphae formation of C. albicans and reduced adhesion of C. albicans to abiotic surfaces by up to 30%

    N-nonyloxypentyl-l-deoxynojirimycin inhibits growth, biofilm formation and virulence factors expression of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is one of the major causes of hospital-and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d-and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 µg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin-and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes

    In-Line Microwave Nondestructive Evaluation of Packaged Food Products via the Support Vector Machine Algorithm

    Get PDF
    This paper presents a novel approach based on electromagnetic waves (EM) to classify food packages that hold water as one of the main ingredients from the inside into contaminated or uncontaminated products. A non-destructive technique that can handle a real-time food production line is proposed to achieve this goal. This technique combines the operation of a microwave sensing system (MW) with a machine learning (ML) classifier. An accuracy of 100% has been obtained from training the aforementioned ML tool on a dataset constructed from the retrieved scattering parameters of about 500 measuring samples

    The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1 low Mice

    Get PDF
    A major role for human (h)CXCL8 (interleukin-8) in the pathobiology of myelofibrosis (MF) has been suggested by observations indicating that MF megakaryocytes express increased levels of hCXCL8 and that plasma levels of this cytokine in MF patients are predictive of poor patient outcomes. Here, we demonstrate that, in addition to high levels of TGF-β, the megakaryocytes from the bone marrow of the Gata1low mouse model of myelofibrosis express high levels of murine (m)CXCL1, the murine equivalent of hCXCL8, and its receptors CXCR1 and CXCR2. Treatment with the CXCR1/R2 inhibitor, Reparixin in aged-matched Gata1low mice demonstrated reductions in bone marrow and splenic fibrosis. Of note, the levels of fibrosis detected using two independent methods (Gomori and reticulin staining) were inversely correlated with plasma levels of Reparixin. Immunostaining of marrow sections indicated that the bone marrow from the Reparixin-treated group expressed lower levels of TGF-β1 than those expressed by the bone marrow from vehicle-treated mice while the levels of mCXCL1, and expression of CXCR1 and CXCR2, were similar to that of vehicle-treated mice. Moreover, immunofluorescence analyses performed on bone marrow sections from Gata1low mice indicated that treatment with Reparixin induced expression of GATA1 while reducing expression of collagen III in megakaryocytes. These data suggest that in Gata1low mice, Reparixin reduces fibrosis by reducing TGF-β1 and collagen III expression while increasing GATA1 in megakaryocytes. Our results provide a preclinical rationale for further evaluation of this drug alone and in combination with current JAK inhibitor therapy for the treatment of patients with myelofibrosis

    Physical Contamination Detection in Food Industry Using Microwave and Machine Learning

    Get PDF
    The detection of contaminants in food products after packaging by a non-invasive technique is a serious need for companies operating in the food industry. In recent years, many technologies have been investigated and developed to overcome the intrinsic drawbacks of the currently employed techniques, such as X-rays and metal detector, and to offer more appropriate solutions with respect to techniques developed in the academic domain in terms of acquisition speed, cost, and the penetration depth (infrared, hyperspectral imaging). A new method based on MW sensing is proposed to increase the degree of production quality. In this paper, we are going to present a novel approach from measurements setup to a binary classification of food products as contaminated or uncontaminated. The work focuses on combining MW sensing technology and ML tools such as MLP and SVM in a complete workflow that can operate in real time in a food production line. A very good performance accuracy that reached 99.8% is achieved using the non-linear SVM algorithm, while the accuracy of the performance of the MLP classifier reached 99.3%

    Effect of beetroot juice supplementation on aerobic response during swimming

    Get PDF
    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2), carbon dioxide production (VCO2), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3 -). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg-1·h-1 during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold
    • …
    corecore