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Abstract: The detection of contaminants in food products after packaging by a non-invasive technique
is a serious need for companies operating in the food industry. In recent years, many technologies
have been investigated and developed to overcome the intrinsic drawbacks of the currently employed
techniques, such as X-rays and metal detector, and to offer more appropriate solutions with respect to
techniques developed in the academic domain in terms of acquisition speed, cost, and the penetration
depth (infrared, hyperspectral imaging). A new method based on MW sensing is proposed to increase
the degree of production quality. In this paper, we are going to present a novel approach from
measurements setup to a binary classification of food products as contaminated or uncontaminated.
The work focuses on combining MW sensing technology and ML tools such as MLP and SVM in a
complete workflow that can operate in real time in a food production line. A very good performance
accuracy that reached 99.8% is achieved using the non-linear SVM algorithm, while the accuracy of
the performance of the MLP classifier reached 99.3%.

Keywords: food industry; food safety; MW sensing system; non-destructive technique; electromagnetic
modeling; machine learning; non-linear SVM classifier; MLP classifier

1. Introduction

The food industry is one of the most important human activities for the prosperity and
development of society. For this reason, companies that are active in this field try to impose
serious and rigorous safety procedures to control the quality of their food products. During
the last decades, the automation of food production has been developing enormously,
this growth increases the possibility of having more contamination sources during the
production process [1]. The packaging phase is considered the most critical process in which
the food product could be exposed to contaminated materials. The presence of foreign
bodies is not only serious for damaging the company’s reputation, but most importantly, it
can cause negative consequences for consumers’ health. Discovering these contaminants
inside food packages with non-destructive techniques is a challenge, and has become an
impelling need.

In the last years, many technologies and methods such as X-ray technology [2], IR
imaging, and others have been explored and developed to face this issue. However, these
methods have a lot of drawbacks. X-ray-based devices may fail in detecting low-density
material, such as the plastic used for packaging. They also require special care in the
operation within food industries due to the ionization radiation that may potentially affect
the food sample under test. On the other hand, IR imaging is known for its low penetration
depth, and the high absorption by water which is the main content of most food products.
Other techniques have been investigated and developed to be used in such applications,
such as Microwave and mmW imaging systems. The microwave can be an effective and
good choice to be used in detecting contaminated material by a non-destructive technique.
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In addition, it has a good penetration depth inside the materials and the non-ionizing
radiations are completely safe both for the food product and for the operators in the
working environment.

Thus, our goal in this paper is focused on detecting physical contamination inside
food packages. The novel detection principle here exploited consists of the dielectric
contrast between the background (the food medium) and the contaminant. The different
permittivities, indeed, cause an alteration of the electromagnetic (EM) waves, which, if
correctly acquired, could lead to the notification of a foreign body. The acquired signals
from the antennas operating at microwave frequencies are employed in combination with
specific machine learning (ML) tools to binarily classify the food samples into contaminated
or uncontaminated products. This requires the development of a microwave sensing system
that can operate in real time at the speed of a fast conveyor belt that carries the packages in
an industrial production line process.

The combination of ML tools with different sensing systems has become of great
interest in the previous years. A lot of ML algorithms and classifiers have been used in this
domain, such as neural networks [3], linear and non-linear SVM [4], and others. In our
work, we are going to focus mainly on using two types of classifiers, which are the SVM (of
non-linear type) and the MLP. Our choice to work with these two specific algorithms was
made for many reasons. The SVM has been implemented in many electromagnetic-based
applications, and in the last years, it has been inserted in microwave-based applications
such as damaged apple sorting [5] and human movement classification [6]. On the other
hand, the MLP has been used in archaeological shards classification [7], modeling passive
and active structures and devices [8], and in the food industry [9], which is the closest to
our work.

In this paper, we are going to work similarly to [9], but with some additions and
modifications. The author of [9] (and one of the co-authors in this paper) chose to use the
MLP classifier with a microwave sensing system to identify whether the food sample under
test is contaminated or not. We proposed to enhance the results obtained in [9] in three
ways. First, we investigated the SVM algorithm instead of using MLP, since we achieved
very good results with this algorithm in similar applications, e.g., [5,10]. Secondly, we
optimized the performance of the two classifiers using the Grey Wolf Optimizer (GWO),
and finally, we constructed different types of dataset and we trained again the two ML
algorithms on it. Figure 1 below shows the workflow, starting from the measurements
extraction and ending with the results obtained from each classifier. It is worth mentioning
that every step in this workflow after the measurements extraction was applied twice—the
first time using the Amplitude only type dataset, while the second was by training the
classifiers on the Complex nature dataset.

Figure 1. Workflow.
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2. Measurements Setup

The MW sensing system was developed in Politecnico di Torino laboratory and is fully
described in [9,11], however, in this section, we are going to restate briefly the description
of this system, and how we obtained the required data for the ML process. We conducted
our measurements on jars issued by a food company that produces hazelnut–cocoa cream.
The physical dimensions of each jar are as follows: 6.6 cm in diameter and 7.5 cm in
height. Taking into consideration these dimensions, we performed our measurements in a
frequency band between 9 and 11 GHz, with frequency of interest centered at 10 GHz. This
frequency was chosen as a compromise between the penetration depth of the microwave
and the resolution required to spot intrusions of millimeter size. The dielectric properties
of the food inside the jars were measured using a probe operating at 10 GHz, resulting in
relative dielectric constant equal to 2.86, and 0.21 S/m for the conductivity. For practical
reasons, as a first assessment, the hazelnut–cocoa cream was substituted by safflower oil.
The dielectric properties are equivalent in the whole frequency range here selected for both
materials, and they were employed for practical purposes, as it is easier to handle and
allows to evaluate the intrusion position more precisely. The foreign bodies employed in
the assessment were partly provided by the company, consisting of 2-millimeter-radius
spherical samples of different materials (soda–lime glass, PTFE nylon) commonly used to
validate inspection devices. Further, we added some other materials and foreign bodies,
which can be potentially present into an industrial environment, as glass or other types
of plastic. The employed intrusions are shown in Figure 2 and numbered from 1 to 6, in
addition to information about their most probable position inside the jars, as referred by
red circles (a,b,c,d) in the same figure. Based on these data, we created seven jars samples,
one free of any contamination materials, and the other six with the different types of
contaminants. Accordingly, we tried to cover the whole volume to inspect, by placing the
intrusions in different positions inside the jars, so as to provide a complete validation of
the system.

Figure 2. Uncontaminated jar sample filled up with oil. The image includes different types of
contaminants, numbered from 1 to 6, and the circles drawn on the jar (a,b,c, and d) refer to the most
probable positions of the contaminants materials inside the jars.

The MW sensing system shown in Figure 3 is formed mainly of an array made up
of six antennas fixed on an arch-shaped bearer that allows the jars to pass through it
without any interruption. Using a method proposed in [12], also applied in the domain
of biomedical applications [13] and in food safety [14], a precise numerical analysis of the
singular value decomposition (SVD) of the discretized scattering operator is performed, so
as to determine the number and the positions of the antennas, clearly considering also the
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physical constraints of an actual in-line implementation. This antenna array is connected
to a 6-port vector network analyzer (VNA) to record the scattering matrices retrieved by
the interaction of the radiating microwave with the jar sample. A photocell detecting the
passage of the item triggers the start of the measurement when the object approaches the
antenna array. The elements of the array radiate one after another in a sequence form.
At each point when a single antenna radiates, we assume this antenna is working as a
transmitter, while the other five antennas with the radiating one itself are the receivers. In
this way, we obtained a scattering matrix Sij (shown in the next section) of dimensions
6 × 6 at each frequency point between 9 and 11 GHz with a step equal to 200 MHz.

Figure 3. Microwave sensing system.

3. Dataset Construction

A deep analysis of the measured data is presented in this section, with the aim of
building up the dataset for the ML process.

The experimental measurement was conducted hundreds of times on the uncontami-
nated jar and tens of times on each contaminated jar, with a slight change in the position
of these jars with respect to the elements of the imaging system, such as rotating the jar
with a small angle each time the test was repeated. We obtained an output for about
1240 samples, these samples were split as follows: 600 samples for the uncontaminated and
640 for the contaminated cases. The output of each jar under test was a scattering matrix
Sij (shown below), consisting of 36 elements, that carries the information about the state of
the jar at each frequency point, while i and j correspond to the receiving and transmitting
antennas respectively, and Sij is the response of the receiving antenna i due to the radiation
of the transmitting antenna j. We excluded the reflection coefficients elements Sii, i.e., the
elements lie on the diagonal colored with red in the matrix Sij below. The matrix formed
of the remaining 30 elements converted into a one-column vector VSij as clarified below.
Sweeping the frequency from 9 to 11 GHz leaves us with a number of vectors equal to
the number of the frequencies which is 11. By this and at each time a jar sample passes
through the sensing system, we are going to have a huge matrix of dimension equal to
30 × 11 consisting of 11 columns, and each column represents a matrix of rank = 30.
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Sij =



S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

; VSij =



S12
...

S16
S21

...
S26
S31

...
S36
S41

...
S46
S51

...
S56
S61

...
S65


In our work, we focus on two types of data used for the training phase, which are the

Magnitude only (Amplitude only) and the complex nature datasets, as mentioned at the
beginning. We neglected the dataset formed with both magnitude and phase, as we did
not achieve good classification accuracy for such types of information; the same occurred
and was mentioned in [9]. The matrices used in constructing the Magnitude only dataset
are of dimensions equal to 330, and each matrix represents an output for a jar under test.
For the training part, we are not going to have complete information for the sample under
test because we neglected the phase values from the measurements data. On the other
hand, using data with a complex nature should be more inclusive. However, it is not
possible to work directly with complex numbers in ML without applying preprocessing
to our measurements, and this will result in making the ML algorithm heavier. To avoid
this, we chose to construct the complex nature dataset using the values of the real and the
imaginary part of Sij in a separated and consecutive form at each frequency, and in this
way, we doubled the dimension of our matrices to become 30 × 11 × 2 = 660.

4. ML Tools

Before discussing the used ML tools, it is important to show why the usage of these
tools is necessary in such applications. To answer this question, we should review what type
of data we are working on; for this reason, we constructed two images from the magnitude
of the retrieved S-parameters for different types of jars exposed to the microwave sensing
system.

The images shown in Figure 4 are the plotting of the entire elements of matrices each
of dimension 30 × 11, which is a set of information that carries the amplitude part only
from the data measurements. The two images represent two jar samples under test, one is
the uncontaminated sample, and the other represents the contaminated one. We can detect
a variance in the values of the amplitude between the two cases at different frequencies, as
indicated by the black circles drawn in Figure 4. The images contain relevant information,
but because of the low resolution at the MW frequencies, it is not enough for us as humans
to determine if the image referred to a contaminated or uncontaminated jar sample. In
addition, there is uncertainty in the scattering matrices every time the process is repeated.
The reason for this uncertainty is that the measurements are being performed in dynamic
conditions, and the scattering behavior of the MW is impacted by four varying parameters.
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These parameters are as follows: the type, the size and the position of the intrusion inside
the jar, and the fourth one is related to the movement of the jar sample on the conveyor belt
with a constant velocity. Thus, the usage of ML algorithms to automate the classification
process is necessary and is considered to be very powerful while working with such a
dynamic state.

(a) (b)

Figure 4. Plotting of the amplitude of the retrieved S-parameters from two samples under test.
(a) The uncontaminated jar sample; (b) the contaminated jar sample.

Principal Component Analysis (PCA) [15] allows us to plot the data shown in Figure 5
below. The figures show the distribution of our two constructed datasets on the three
most significant eigenvectors. We indicate with the red circles the contaminated samples,
while the green circles correspond to the uncontaminated samples. From the figures, it is
clear that the data are overlapping and non-linearly separable for both datasets, and thus,
choosing a non-linear ML model to separate the two classes is indisputable. Looking into
references that include similar procedures to those in [5,7,9,10,16], they focused mainly on
using two ML algorithms, which are the Non-linear Support Vector Machine (SVM) and the
Multi-Layer Perceptron (MLP). The reason behind focusing on using those two algorithms
is that they are considered powerful and efficient in dealing with non-linearly separable
classification problems with small datasets. All the functions of SVM and MLP are built-in
and implemented in Python, which is a programming language with open-source libraries
for ML. In the next two subsections, we are going to note more on the strengths of these
classifiers algorithms and state the theory behind how each algorithm operates.

4.1. SVM

The Support Vector Machine is a supervised binary classifier, it is considered to be
one of the most robust and precise ML algorithms, especially when working on a small
database, such as in our case. SVM is of two categories, the linear SVM which is preferable
in simple configuration, i.e., when the data of the two classes are linearly separable, the
other type is the non-linear SVM, which is suitable for working with non-linearly separable
data. SVM in its both types works on finding the optimal hyperplane that can separate
the between the two classes that are desired for classification. The performance of SVM is
impacted by finding the hyperparameters; one of these hyperparameters is “C”, which is
responsible for the adjustment of the margin that separates the two classes, and C should
be determined whatever the type of the SVM.
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(a) (b)

Figure 5. Data distribution on the 3 most significant eigenvectors. (a) Complex nature dataset.
(b) Amplitude only dataset.

As shown before in Figure 5, our datasets are non-linearly separable; it is clear then
that we need to use the non-linear SVM in our application. The analysis of the theory
of SVM in its two types can be found in references such as [17,18], however, in our case,
we conducted the work in the same way as it is implemented and discussed in [10]. The
non-linear SVM uses the trick of using the “Kernel” function to find the optimal hyperplane,
it projects the data into a higher dimension, searching for the hyperplane that separates the
data; however, using “Kernel” requires calculating other hyperparameters. In our work,
we used the Radial Basis Function (RBF) Kernel function, and then another hyperparameter
called Gamma “γ” should be determined. Gamma is a critical parameter that is required to
compromise the values of the weight given to the samples based on its separating distance
from the origin of the training dataset. The choice of C and γ is not straightforward; for
this reason, we used Grey Wolf Optimizer (GWO) to search for the optimal values of the
two parameters. The GWO is briefly described at the end of the ML tools section.

Unlike neural network algorithms, SVM is not preferable for use with datasets with
high-complexity data. In our paper, we applied SVM on datasets with low-complexity data
(e.g., relatively low number of features), and then we do not have limitations regarding the
performance of SVM on such types of datasets.

4.2. MLP

The other ML algorithm that we tested in our work is the Multi-Layer Perceptron
(MLP). MLP is an artificial fully connected multi-layer neural network [19] algorithm, it is
powerful and effective in treating classification problems for both high and low-complexity
databases. The map of MLP shown in Figure 6 below, and it is well known for most people
working on ML tools. MLP is a supervised learning technique that starts from an input
layer with a vector of input data to predict an output vector (1 or −1 for our case). In [19],
we can find the theory explaining in detail how MLP works. In addition, we derived our
work in a similar way to the approach followed in [9], but with the help of the GWO in
calculating the optimal number of neurons (N∗).
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Figure 6. A Multi-layer Perceptron map with connected layers.

In SVM, the difference between training the algorithm on the two different database
was only in the values of the optimal hyperparameters C and γ, while this is not the case
with implementing MLP. In MLP, it is necessary to search for a trade-off between the type of
the activation function, the solver (optimizer), number of hidden layers, and the number of
neurons in addition to many other parameters that are explained and discussed in [19] and
used and mentioned in [9]. In our work, we used the Relu activation function for training
the MLP on the Amplitude only dataset, but we used Logistic with the complex nature
dataset. The same optimizer, lbfgs, was used with the two databases. The number of the
hidden layers should be determined based on the complexity of our database, and since
our datasets are not of high complexity, we started the training with one hidden layer.

5. Optimization Using Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) mimics the leadership hierarchy and the hunting
mechanism inspired from the behavior of the grey wolves in nature [20]. The algorithm was
proposed and discussed in [20], and is used well in many applications such as optimizing
the detection process of damaged fruits, as discussed in [16]. We used this optimizer
algorithm to search for the optimal parameters needed in both ML algorithms (SVM and
MLP) to reduce as much as possible the error on the validation set, and in this way, to have
much better accuracy in classifying the samples of the test set. For the non-linear SVM, we
aimed at determining the optimum hyperparameters pair (C∗ and γ∗), while we used it
with MLP to estimate the optimal number of neuron (N∗) in the hidden layer. The values of
all these parameters obtained from the optimization process will be presented in the results
section with the validation results.

6. Results

The two developed datasets are divided into three parts—training, validation, and the
test set. The training and the validation sets are also known as the development sets. As
mentioned before, our dataset is formed of 1240 samples, it was split into 58–42% (720–520
samples), corresponding to the development and the test sets, respectively, as shown below
in Table 1. It is important to have a balanced number of contaminated and uncontaminated
samples in the training set. In addition, the overall contaminated class should be developed
from an equal number of samples extracted from each contaminated class alone. Thus, we
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built our training dataset by choosing randomly 360 samples from the uncontaminated
class and 60 samples from each contaminated class, as clarified below in Table 1. We labeled
the training data as +1 and −1, referring to the uncontaminated cases and contaminated
cases, respectively. Another partitioning should be applied in the development set itself; we
chose it to be as follows: 90–10% (648–72 samples), referring to training and validation sets,
respectively. It is mentioned in [9] that they have partitioned there datasets into 70–30%
for there first split, and 75–25% for the second split. In our work, we tried to minimize the
number of the samples for the development set as much as possible. The goal behind this is
to check if we can still achieve good performance with less heavy datasets trained on MLP
or on non-linear SVM, both with GWO. In addition, this will allow us to have a greater
number of samples for the test phase.

Table 1. Number of samples used from each class for training and test phases.

Classes Number of Samples
Used for Training

Number of Samples
Used for Test

Uncontaminated 360 240
Contaminated with small splinter of Glass 60 60

Contaminated with Metal 60 40
Contaminated with small splinter of Plastic 60 60

Contaminated with PTFE sample sphere 60 40
Contaminated with soda–lime glass

sample sphere 60 40

Contaminated with fragment of wood 60 40

Our aim in this work is to compare the accuracy performance of two different ML
algorithms trained on two different types of datasets, as clarified before. In addition to
this, using GWO gave us the option to compare the results obtained from training the
MLP algorithm on the complex nature dataset with the results obtained in [9]. Due to the
strategy that we followed, we arrived at four groups of results. Before presenting these
results, we should first define the confusion matrix shown in Table 2 below, which is a
method of displaying the results when working with classification problems.

Table 2. Confusion matrix.

N P

N TN FP
P FN TP

The confusion matrix shown in Table 2 is defined as a summarizing report for a
classification problem on ML. The elements of this matrix are as follows: TN is the true
negative, TP presents the true positive classified samples, while FP and FN are referring
for the error in the classification process and stands for false positive and false negative,
respectively. False negative means that some of the uncontaminated samples are rejected,
while false positive means that some of the contaminated jars are not spotted. In critical
applications such as ours, any error in not detecting a contaminated food product could
have a serious effect on the consumer. For this reason, the quality control in food industry
prefers to obtain zero error for the FP term.

6.1. Results for Magnitude Only Dataset

Table 3 below shows the validation results for training the two different classifiers on
the Amplitude only dataset, in addition to the values of the optimal parameters of each
algorithm that was obtained after applying the GWO. The validation result is ideal (100%)
with the non-linear SVM algorithm, while it is slightly lower with MLP (about 98.6%).
This difference in the results between the two different algorithms is normal and it was



Electronics 2022, 11, 3115 10 of 17

predictable due to the difference in the mathematical method used by each algorithm in
solving the classification problem. Moreover, it is important to mention that by repeating
the training process with the MLP algorithm, the accuracy of the validation set varied
between 98% and 100%, and this is also predictable, since every time MLP is launched,
it starts with random values of weights connecting the layers [19], however, this is not
the case with using SVM, which operates in more stable conditions especially after fixing
the optimal parameters, therefore, it yields mostly the same results in each run. Another
factor to be taken into consideration is the training time, which will show how long each
algorithm takes to be trained and to validate the performance on the training dataset.

Table 3. The optimum pair (C*, γ*) for non-Linear SVM and the optimal number of neurons (N*)
for MLP. Training time, confusion matrices and accuracy obtained on the validation set for the two
different ML algorithms trained with Magnitude only dataset.

Used Algorithm Optimal Parameters Training Time (s) Confusion Matrix Val Set Accuracy on Val Set (%)

Non-linear SVM (2,056,177,868, 2× 10−4) 0.01
(

38 0
0 34

)
100

MLP 11 0.2
(

37 1
0 34

)
98.6

We recorded the confusion matrices obtained for the test samples by launching the
classifiers for 100 consecutive times. We plotted the results for each ML algorithm using
three separated curves, the first and the second one are for the well-classified and the
misclassified samples of testing all the contaminated samples together in one class with the
uncontaminated ones (Figures 7 and 8), however, the third curve shows the misclassified
samples in each contaminated class in a separate form (Figures 9 and 10). Additionally,
we calculated the average performance accuracy of the six contaminated classes, and we
highlighted the most critical case faced in each classifier. In the testing process, we faced
some critical cases, e.g., samples that include small intrusions and are made up of materials
with dielectric properties which as somehow similar to the permittivity of the background
of the medium (oil in our case) and had sunken to the bottoms of the jars.

Figure 7. Confusion matrices obtained by the non-linear SVM classifier trained on Magnitude only
dataset. Curve (a) shows the plot of the well-classified terms TP and TN, while curve (b) is the plot of
the misclassified terms FP and FN.
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Figure 8. Confusion matrices obtained by the MLP classifier trained on Magnitude only dataset.
Curve (a) shows the plot of the well classified terms TP and TN, while curve (b) is the plot of the
misclassified terms FP and FN.

Figure 9. The plot of the misclassified terms FP and FN of the confusion matrices for each contami-
nated class alone. The results obtained by the non-linear SVM algorithm trained on the Magnitude
only dataset.

The classification results are very good and acceptable on average for both ML algo-
rithms, with a significant lead in the performance of the non-linear SVM classifier that
clearly manifested in the confusion matrices curves Figures 7–10 and in Table 4. The ac-
curacy of the the overall performance of the two algorithms calculated to be as follows,
95.6% for MLP and 99.2% for the non-linear SVM. Neural network algorithms (such as
MLP) are known for their power with datasets with high-complexity data. However, our
application is more adequate to treat using SVM, which is preferable to be used in the case
of datasets with low-complexity non-linear data. For this reason, it is predictable to obtain
better accuracy by applying SVM.
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Figure 10. The plot of the misclassified terms FP and FN of the confusion matrices for each contami-
nated class alone. The results obtained by the MLP algorithm trained on the Magnitude only dataset.

Table 4. The average performance accuracy of the two classifiers with the Magnitude only dataset.

Classes Average Accuracy
with SVM (%)

Average Accuracy
with MLP (%)

Uncontaminated 99.3 95.2
Contaminated with small splinter of glass 99 96.5

Contaminated with metal 99.3 94
Contaminated with small splinter of plastic 99.3 98.5

Contaminated with PTFE sample sphere 98.2 92.8
Contaminated with soda–lime glass sample sphere 98.9 95.9

Contaminated with fragment of wood 99.5 96

As seen in Table 4, the highest error rate in the classification results was recorded for
the jars contaminated with PTFE materials, which is a small sphere of 2 mm in diameter
that had sunken in the bottom of the jar. To reduce the classification error for all classes
and in particular for the critical case, we used the complex nature dataset that includes the
entire information about the samples under test. We expect that using both the real and the
imaginary parts in constructing the dataset would give us better results.

6.2. Results for the Complex Dataset

Working with a complex nature database instead of the Amplitude only dataset should
enhance the performance of the classifiers, since more data are inserted for training. In
the same manner in which we introduced the results of the Magnitude only dataset, we
are going to present the validation and the test results. Table 5 below shows the GWO
results, the validation results, and the time required for each algorithm to be trained on the
new dataset.

Table 5. The optimum pair (C*,γ*) for non-linear SVM and the optimal number of neurons (N∗) for
MLP. Training time, confusion matrices, and accuracy obtained on the validation set for the two
different ML algorithms trained with the Complex nature dataset.

Used Algorithm Optimal Parameters Training Time (s) Confusion Matrix Val Set Accuracy on Val Set (%)

Non-linear SVM (3,400,529,630, 3× 10−2) 0.01
(

41 0
0 31

)
100

MLP 11 0.4
(

40 0
0 32

)
100
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The validation results for both algorithms are perfect with zero error. However, the
difference is clear in the training time, and again, MLP required more time to be trained on
the new dataset. The classification results on the test dataset are presented in the curves
below Figures 11–14, showing the well-classified and the misclassified samples in the same
way that was employed for the magnitude only dataset, and Table 6 shows the average
accuracy performance for all the contaminated classes and for the uncontaminated one.

Figure 11. Confusion matrices obtained by the non-linear SVM classifier trained on the Complex
nature dataset. Curve (a) shows the plot of the well-classified terms TP and TN, while curve (b) is the
plot of the misclassified terms FP and FN.

Figure 12. The plot of the misclassified terms FP and FN of the confusion matrices for each contam-
inated class alone. The results obtained by the non-linear SVM algorithm trained on the Complex
nature dataset.
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Figure 13. Confusion matrices obtained by the MLP classifier trained on the Complex nature dataset.
Curve (a) shows the plot of the well-classified terms TP and TN, while curve (b) is the plot of the
misclassified terms FP and FN.

Figure 14. The plot of the misclassified terms FP and FN of the confusion matrices for each con-
taminated class alone. The results were obtained by the MLP algorithm trained on the Complex
nature dataset.

Table 6. The average performance accuracy of the two classifiers with the Complex nature dataset.

Classes Average Accuracy with SVM
(%)

Average Accuracy with MLP
(%)

Uncontaminated 99.9 99.3
Contaminated with small splinter of glass 99.9 99.8

Contaminated with metal 100 99.9
Contaminated with small splinter of plastic 100 99.5

Contaminated with PTFE sample sphere 99.7 98
Contaminated with soda–lime glass sample sphere 99.3 99.6

Contaminated with fragment of wood 99.8 98.6

The new training approach gave us better classification results, and the performance
of the MLP algorithm was enhanced in a significant way and reached 99.3%. On the other
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hand, the performance of the non-linear SVM is perfect with this type of information in the
dataset, the average accuracy of classification by the non-linear SVM reached 99.8%. The
results approached 100% for most of the tested classes, and 99.3% for the critical case. It is
obvious that the performance of the non-linear SVM is better on both types of datasets. The
preference is not only for the classification results, but also for the training time consumed
and for the stability of the obtained results every time we repeat the test phase.

At the end of the section in which we presented and discussed our results, we need
to compare these results to what was published in [9]. Table 7 below summarizes the
conditions and the results of our work compared to what was published in [9].

Table 7. The table summarizes the conditions under which we obtained the results in our paper
compared to what was followed in [9].

Conditions [9] This Paper This Paper

Used classifier MLP MLP Non-linear SVM

Dataset nature Complex (Real-Imag) Complex (Real-Imag) Complex (Real-Imag)

Dataset split (Training
set–Test set) 70–30% (868–372 samples) 58–42% (720–520 samples) 58–42% (720-520 samples)

Optimization method None - GWO GWO

Average performance
accuracy 99.35% 99.3% 99.8%

In Table 7, we presented the performance accuracy of the classifiers on the test datasets
under different conditions. The usage of the GWO with MLP aimed to estimate the optimal
number of neurons in a short amount time (about 50 sec). This can be performed manually
in much more time, as in the procedure in [9]. One condition that is important for the
accuracy is the number of samples in the training and the test datasets; in our work, we
tried to reduce the number of samples in the training dataset, so that we could have
more samples to test. As shown in Table 7, the dataset was split in our work into 58–42%
(training–test); however, in [9], the split was 70–30% (training–test). This difference resulted
in an insignificant change (about 0.05%) in accuracy, and this is predictable, since as the
number of the test samples increases, the error increases.

7. Conclusions

The results of this study demonstrate the power and the robustness of using ML
algorithms with an MW sensing system in food industry applications. We built on the work
that was started in [9] by using another classifier (non-linear SVM) and by inserting the
optimization method (GWO) to enhance the performance of the algorithms. The workflow
in this paper started from the experimental measurements using a MW system and ended
by classifying the jars samples into contaminated or uncontaminated products. Finally, we
managed to obtain results that are supposed to be accepted by companies that are active in
the food industry. Although the results we obtained from our work are good and effective
in solving this special issue, we expect that this methodology can also be a good choice in
many other industrial and medical applications.
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Abbreviations
The following abbreviations are used in this manuscript:

MW Microwave
SVM Support vector Machine
MLP Multilayer perceptron
VNA Vector Network Analyzer
EM Electromagnetic
ML Machine learning
mmW millimeter wave
SVD Singular value decomposition
GWO Grey Wolf Optimizer
PCA Principal Component Analysis
RBF Radial Basis Function
Relu Rectified linear Activation Unit
Lbfgs limited-memory Royden-Fletcher-Goldfarb-Shanno
PTFE Polytetrafluoroethylene
TN True negative
TP True Positive
FN False negative
FP False positive

References
1. Lau, O.W.; Wong, S.K. Contamination in food from packaging material. J. Chromatogr. A 2000, 882, 255–270 . [CrossRef]
2. Haff, R.P.; Toyofuku, N. X-ray detection of defects and contaminants in the food industry. Sens. Instrum. Food Qual. Saf. 2008, 2,

262–273 . [CrossRef]
3. Guyer, D.; Yang, X. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Comput. Electron.

Agric. 2000, 29, 179–197. [CrossRef]
4. Oliveri, G.; Rocca, P.; Massa, A. Svm for electromagnetics: Stateof- art, potentialities, and trends. In Proceedings of the 2012 IEEE

International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012 .
5. Zidane, F.; Lanteri, J.; Brochier, L.; Joachimowicz, N.; Roussel, H.; Migliaccio, C. Damaged Apple Sorting with mmWave Imaging

and Non-Linear Support Vector Machine. IEEE Trans. Antennas Propag. 2020, 68, 8062–8071 . [CrossRef]
6. Kim, Y.; Ha, S.; Kwon, J. Human Detection Using Doppler Radar Based on Physical Characteristics of Targets. IEEE Geosci. Remote.

Sens. Lett. 2015, 12, 289–293.
7. Zidane, F.; Coli, V.L.; Lanteri, J.; Binder, D.; Marot, J.; Migliaccio, C. Artificial Intelligence-Based Low-Terahertz Imaging for

Archaeological Shards’ Classification. IEEE Trans. Antennas Propag. 2022, 70, 6300–6312. [CrossRef]
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9. Ricci, M.; Štitić, B.; Urbinati, L.; Guglielmo, G.D.; Vasquez, J.A.T.; Carloni, L.P.; Vipiana, F.; Casu, M.R. Machine-Learning-Based

Microwave Sensing: A Case Study for the Food Industry. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 503–514. [CrossRef]
10. Zidane, F.; Lanteri, J.; Brochier, L.; Marot, J.; Migliaccio, C. Fruit Sorting with Amplitude-only Measurements. In Proceedings of

the 18th European Radar Conference (EuRAD), London, UK, 10–15 October 2021 .
11. Ricci, M.; Vasquez, J.A.T.; Scapaticci, R.; Crocco, L.; Vipiana, F. Multi-Antenna System for In-Line Food Imaging at Microwave

Frequencies. IEEE Trans. Antennas Propag. 2022, 70, 7094–7105. [CrossRef]
12. Scapaticci, R.; Tobon, J.; Bellizzi, G.; Vipiana, F.; Crocco, L. Design and numerical characterization of a low-complexity microwave

device for brain stroke monitoring. IEEE Trans. Antennas Propag. 2018, 66, 7328–7338. [CrossRef]
13. Vasquez, A.J.T.; Scapaticci, R.; Turvani, G.; Bellizzi, G.; Joachimowicz, N.; Duchêne, B.; Tedeschi, E.; Casu, M.R.; Crocco,

L.; Vipiana, F. Design and experimental assessment of a 2D microwave imaging system for brain stroke monitoring. Int. J.
Antennas Propag. 2019, 2019, 8065036.

14. Vasquez, J.A.T.; Scapaticci, R.; Turvani, G.; Ricci, M.; Farina, L.; Litman, A.; Casu, M.R.; Crocco, L.; Vipiana, F. Noninvasive inline food
inspection via microwave imaging technology: An application example in the food industry. IEEE Antennas Propag. 2020, 62, 18–32.
[CrossRef]

15. Jolliffe, I. Principal component analysis. Encycl. Stat. Behav. Sci. 2005. [CrossRef]

http://doi.org/10.1016/S0021-9673(00)00356-3
http://dx.doi.org/10.1007/s11694-008-9059-8
http://dx.doi.org/10.1016/S0168-1699(00)00146-0
http://dx.doi.org/10.1109/TAP.2020.3016184
http://dx.doi.org/10.1109/TAP.2022.3189553
http://dx.doi.org/10.2298/JAC0301039M
http://dx.doi.org/10.1109/JETCAS.2021.3097699
http://dx.doi.org/10.1109/TAP.2022.3177436
http://dx.doi.org/10.1109/TAP.2018.2871266
http://dx.doi.org/10.1109/MAP.2020.3012898
http://dx.doi.org/10.1002/0470013192.bsa501


Electronics 2022, 11, 3115 17 of 17

16. Zidane, F.; Lanteri, J.; Migliaccio, C.; Marot, J. System measurement optimized for damages detection in fruit. In Proceedings of
the IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes Juan-les-Pins, France, 15–17 November 2021.

17. Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press:
Cambridge, MA, USA, 2001.

18. Amari, S.i.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999, 12, 783–789.
[CrossRef]

19. Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (The Multilayer Perceptron)—A Review of Applications in the Atmo-
spheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

20. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

http://dx.doi.org/10.1016/S0893-6080(99)00032-5
http://dx.doi.org/10.1016/S1352-2310(97)00447-0
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007

