52 research outputs found

    A preliminary study into the use of tree-ring and foliar geochemistry as bio-indicators for vehicular NOx pollution in Malta

    Get PDF
    Duncan V. Mifsud is the grateful recipient of an Endeavour Scholarship (Republic of Malta). The Endeavour Scholarship Scheme is part-financed by the European Union – European Social Fund (ESF): Operational Programme II – Cohesion Policy 2014-20.Emissions from traffic over the past few decades have become a significant source of air pollution. Among the pollutants emitted are nitrogen oxides (NOx), exposure to which can be detrimental to public health. Recent studies have shown that nitrogen (N) stable isotope ratios in tree-rings and foliage express a fingerprint of their major N source, making them appropriate for bio-monitoring purposes. In this study, we have applied this proxy to Aleppo pines (Pinus halepensis) at three distances from one of the busiest roads in Malta, a country known to suffer from intense traffic pollution. Our results showed that N and organic carbon (C) stable isotope ratios in tree-rings do not vary over the period 1980–2018 at any of the investigated sites; however, statistically significant spatial trends were apparent in both tree-rings and foliage. The roadside and transitional sites exhibited more positive δ15N and more negative δ13C values compared to those at a rural control site. This is likely due to the incorporation of 15N-enriched NOx and 13C-depleted CO2 from traffic pollution. Sampled top-soil also exhibited the δ15N trend. Our results constitute the first known application of dendrogeochemistry to atmospheric pollution monitoring in Malta.PostprintPeer reviewe

    The 2022 COPCA conference in Valletta

    Get PDF
    Collisions represent a fundamental conduit of energy leading to physical and chemical changes in various systems. Ranging from the cosmic scale (e.g., cometary or asteroidal impacts with planetary bodies in the Solar System) to the nanoscale (e.g., the lithographic preparation of nanostructures on surfaces during focused electron beam induced deposition), the physics and chemistry of collisions underpin many important processes of inherent interest to both academic and industrial research. Indeed, collisions are routinely studied in several disciplines, including: molecular physics, nuclear fusion science, astrochemistry, planetary and Solar System science, nanotechnology, battery technology, and materials engineering.peer-reviewe

    Numerical simulation of a confined cavitating gas bubble driven by ultrasound

    Get PDF
    This work investigates the flow disturbance generated by an ultrasonically-driven gas bubble confined in a narrow gap over one acoustic cycle. Here, we provide a more accurate representation of ultrasonic cleaning by implementing a Volume-of-Fluid model in OpenFOAM that simulates the ultrasound as a sinusoidally time-varying pressure boundary condition. A modified Rayleigh-Plesset equation is solved to select an acoustic forcing that instigates bubble collapse. Simulations reveal the interaction between the inflow from the acoustic forcing and the flow deflected by the confining walls intensifies the strength of the self-piercing micro-jet(s), and consequently of the unsteady boundary layer flow, compared to the traditional collapse near a single rigid wall. Depending on the gap height and the position of bubble inception inside the gap, three distinct collapse regimes involving dual-jets or directed-jets are identified, each resulting in a different shear-stress footprint on the confining boundaries. Plots of the spatio-temporal evolution of the shear flow (that is difficult to measure experimentally) reveal peak shear-stress magnitudes at collapse that are double those reported for an undriven laser-induced bubble in similar geometric confinement. This twofold increase is attributed to the ultrasonic signal driving the collapse. Surprisingly, in our simulations we have not encountered a transferred-jet regime previously observed for an unforced bubble collapsing in a similar configuration. This unexpected finding highlights the different physics involved in modelling acoustically-driven bubbles compared to the conventional laser-induced bubbles used in experiments

    Long-term renal function in children with Wilms Tumour and constitutional WT1 pathogenic variant

    Get PDF
    BACKGROUND: Wilms tumour (WT) survivors, especially patients with associated syndromes or genitourinary anomalies due to constitutional WT1 pathogenic variant, have increased risk of kidney failure. We describe the long-term kidney function in children with WT and WT1 pathogenic variant to inform the surgical strategy and oncological management of such complex children. METHODS: Retrospective analysis of patients with WT and constitutional WT1 pathogenic variant treated at a single centre between 1993 and 2016, reviewing genotype, phenotype, tumour histology, laterality, treatment, patient survival, and kidney outcome. RESULTS: We identified 25 patients (60% male, median age at diagnosis 14 months, range 4–74 months) with WT1 deletion (4), missense (2), nonsense (8), frameshift (7), or splice site (4) pathogenic variant. Thirteen (52%) had bilateral disease, 3 (12%) had WT-aniridia, 1 had incomplete Denys-Drash syndrome, 11 (44%) had genitourinary malformation, and 10 (40%) had no phenotypic anomalies. Patient survival was 100% and 3 patients were in remission after relapse at median follow-up of 9 years. Seven patients (28%) commenced chronic dialysis of which 3 were after bilateral nephrectomies. The overall kidney survival for this cohort as mean time to start of dialysis was 13.38 years (95% CI: 10.3–16.4), where 7 patients experienced kidney failure at a median of 5.6 years. All of these 7 patients were subsequently transplanted. In addition, 2 patients have stage III and stage IV chronic kidney disease and 12 patients have albuminuria and/or treatment with ACE inhibitors. Four patients (3 frameshift; 1 WT1 deletion) had normal blood pressure and kidney function without proteinuria at follow-up from 1.5 to 12 years. CONCLUSIONS: Despite the known high risk of kidney disease in patients with WT and constitutional WT1 pathogenic variant, nearly two-thirds of patients had sustained native kidney function, suggesting that nephron-sparing surgery (NSS) should be attempted when possible without compromising oncological risk. Larger international studies are needed for accurate assessment of WT1genotype-kidney function phenotype correlation

    Bombardment of CO ice by cosmic rays: I. Experimental insights into the microphysics of molecule destruction and sputtering

    Get PDF
    We present a dedicated experimental study of microscopic mechanisms controlling radiolysis and sputtering of astrophysical ices due to their bombardment by cosmic ray ions. Such ions are slowed down due to inelastic collisions with bound electrons, resulting in ionization and excitation of ice molecules. In experiments on CO ice irradiation, we show that the relative contribution of these two mechanisms of energy loss to molecule destruction and sputtering can be probed by selecting ion energies near the peak of the electronic stopping power. We have observed a significant asymmetry, both in the destruction cross section and the sputtering yield, for pairs of ion energies corresponding to same values of the stopping power on either side of the peak. This implies that the stopping power does not solely control these processes, as usually assumed in the literature. Our results suggest that electronic excitations represent a significantly more efficient channel for radiolysis and, possibly, also for sputtering of CO ice. We also show that the charge state of incident ions as well as the rate for CO+^+ production in the ice have negligible effect on these processes.Comment: Accepted for publication in Ap

    Proton and electron irradiations of CH4:H2O mixed ices

    Get PDF
    The organic chemistry occurring in interstellar environments may lead to the production of complex molecules that are relevant to the emergence of life. Therefore, in order to understand the origins of life itself, it is necessary to probe the chemistry of carbon-bearing molecules under conditions that simulate interstellar space. Several of these regions, such as dense molecular cores, are exposed to ionizing radiation in the form of galactic cosmic rays, which may act as an important driver of molecular destruction and synthesis. In this paper, we report the results of a comparative and systematic study of the irradiation of CH4:H2O ice mixtures by 1 MeV protons and 2 keV electrons at 20 K.We demonstrate that our irradiations result in the formation of a number of new products, including both simple and complex daughter molecules such as C2H6, C3H8, C2H2, CH3OH, CO, CO2, and probably also H2CO. A comparison of the different irradiation regimes has also revealed that proton irradiation resulted in a greater abundance of radiolytic daughter molecules compared to electron irradiation, despite a lower radiation dose having been administered. These results are important in the context of the radiation astrochemistry occurring within the molecular cores of dense interstellar clouds, as well as on outer Solar System objects.Comment: Published as an open access article in the MDPI journal Atom

    Proton and Electron Irradiations of CH4:H2O Mixed Ices

    Get PDF
    The organic chemistry occurring in interstellar environments may lead to the production of complex molecules that are relevant to the emergence of life. Therefore, in order to understand the origins of life itself, it is necessary to probe the chemistry of carbon-bearing molecules under conditions that simulate interstellar space. Several of these regions, such as dense molecular cores, are exposed to ionizing radiation in the form of galactic cosmic rays, which may act as an important driver of molecular destruction and synthesis. In this paper, we report the results of a comparative and systematic study of the irradiation of CH4 :H2O ice mixtures by 1 MeV protons and 2 keV electrons at 20 K. We demonstrate that our irradiations result in the formation of a number of new products, including both simple and complex daughter molecules such as C2H6, C3H8, C2H2, CH3OH, CO, CO2, and probably also H2CO. A comparison of the different irradiation regimes has also revealed that proton irradiation resulted in a greater abundance of radiolytic daughter molecules compared to electron irradiation, despite a lower radiation dose having been administered. These results are important in the context of the radiation astrochemistry occurring within the molecular cores of dense interstellar clouds, as well as on outer Solar System objects
    • …
    corecore