176 research outputs found

    Multifunctional and compact 3D FMCW MIMO radar system with rectangular array for medium-range applications

    Full text link
    Miralles-Navarro, E.; Multerer, T.; Ganis, A.; Schoenlinner, B.; Prechtel, U.; Meusling, A.; Mietzner, J.... (2018). Multifunctional and compact 3D FMCW MIMO radar system with rectangular array for medium-range applications. IEEE Aerospace and Electronic Systems Magazine. 33(4):46-54. https://doi.org/10.1109/MAES.2018.160277S465433

    A portable 3D Imaging FMCW MIMO Radar Demonstrator with a 24x24 Antenna Array for Medium Range Applications

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Multiple-input multiple-output (MIMO) radars have been shown to improve target detection for surveillance applications thanks to their proven high-performance properties. In this paper, the design, implementation, and results of a complete 3-D imaging frequency-modulated continuous-wave MIMO radar demonstrator are presented. The radar sensor working frequency range spans between 16 and 17 GHz, and the proposed solution is based on a 24-transmitter and 24-receiver MIMO radar architecture, implemented by timedivision multiplexing of the transmit signals. A modular approach based on conventional low-cost printed circuit boards is used for the transmit and receive systems. Using digital beamforming algorithms and radar processing techniques on the received signals, a high-resolution 3-D sensing of the range, azimuth, and elevation can be calculated. With the current antenna configuration, an angular resolution of 2.9° can be reached. Furthermore, by taking advantage of the 1-GHz bandwidth of the system, a range resolution of 0.5 m is achieved. The radio-frequency front-end, digital system and radar signal processing units are here presented. The medium-range surveillance potential and the high-resolution capabilities of the MIMO radar are proved with results in the form of radar images captured from the field measurements.Ganis, A.; Miralles-Navarro, E.; Schoenlinner, B.; Prechtel, U.; Meusling, A.; Heller, C.; Spreng, T.... (2018). A portable 3D Imaging FMCW MIMO Radar Demonstrator with a 24x24 Antenna Array for Medium Range Applications. IEEE Transactions on Geoscience and Remote Sensing. 56(1):298-312. https://doi.org/10.1109/TGRS.2017.2746739S29831256

    The historical origins of corruption in the developing world: a comparative analysis of East Asia

    Get PDF
    A new approach has emerged in the literature on corruption in the developing world that breaks with the assumption that corruption is driven by individualistic self-interest and, instead, conceptualizes corruption as an informal system of norms and practices. While this emerging neo-institutionalist approach has done much to further our understanding of corruption in the developing world, one key question has received relatively little attention: how do we explain differences in the institutionalization of corruption between developing countries? The paper here addresses this question through a systematic comparison of seven developing and newly industrialized countries in East Asia. The argument that emerges through this analysis is that historical sequencing mattered: countries in which the "political marketplace" had gone through a process of concentration before universal suffrage was introduced are now marked by less harmful types of corruption than countries where mass voting rights where rolled out in a context of fragmented political marketplaces. The paper concludes by demonstrating that this argument can be generalized to the developing world as a whole

    A role for gut-associated lymphoid tissue in shaping the human B cell repertoire

    Get PDF
    PMCID: PMC3754866Rockefeller University Press grants the public the non-exclusive right to copy, distribute, or display this Work under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ and http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

    High Affinity Antigen Recognition of the Dual Specific Variants of Herceptin Is Entropy-Driven in Spite of Structural Plasticity

    Get PDF
    The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called “structural plasticity”. Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire
    corecore