232 research outputs found

    Dyslipidemia and Food Security in Low-Income US Adolescents: National Health and Nutrition Examination Survey, 2003-2010.

    Get PDF
    INTRODUCTION: Low levels of food security are associated with dyslipidemia and chronic disease in adults, particularly in women. There is a gap in knowledge about the relationship between food security among youth and dyslipidemia and chronic disease. We investigated the relationship between food security status and dyslipidemia among low-income adolescents. METHODS: We analyzed data from adolescents aged 12 to 18 years (N = 1,072) from households with incomes at or below 200% of the federal poverty level from the National Health and Nutrition Examination Survey (NHANES) 2003-2010. We used logistic regression to examine the relationship between household food security status and the odds of having abnormalities with fasting total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), serum triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), TG/HDL-C ratio, and apolipoprotein B (Apo B). Models included age, sex, race/ethnicity, smoking status, partnered status in the household, and maternal education, with additional adjustment for adiposity. RESULTS: Household food security status was not associated with elevated TC or LDL-C. Adolescents with marginal food security were more likely than food-secure peers to have elevated TGs (odds ratio [OR] = 1.86; 95% confidence interval [CI], 1.14-3.05), TG/HDL-C ratio (OR = 1.74; 95% CI, 1.11-2.82), and Apo B (OR = 1.98; 95% CI, 1.17-3.36). Female adolescents with marginal food security had greater odds than male adolescents of having low HDL-C (OR = 2.69; 95% CI, 1.14-6.37). No elevated odds of dyslipidemia were found for adolescents with low or very low food security. Adjustment for adiposity did not attenuate estimates. CONCLUSION: In this nationally representative sample, low-income adolescents living in households with marginal food security had increased odds of having a pattern consistent with atherogenic dyslipidemia, which represents a cardiometabolic burden above their risk from adiposity alone

    Children's Hospital Association Consensus Statements for Comorbidities of Childhood Obesity

    Full text link
    Background: Childhood obesity and overweight affect approximately 30% of US children. Many of these children have obesity-related comorbidities, such as hypertension, dyslipidemia, fatty liver disease, diabetes, polycystic ovary syndrome (PCOS), sleep apnea, psychosocial problems, and others. These children need routine screening and, in many cases, treatment for these conditions. However, because primary care pediatric providers (PCPs) often are underequipped to deal with these comorbidities, they frequently refer these patients to subspecialists. However, as a result of the US pediatric subspecialist shortage and considering that 12.5 million children are obese, access to care by subspecialists is limited. The aim of this article is to provide accessible, user-friendly clinical consensus statements to facilitate the screening, interpretation of results, and early treatment for some of the most common childhood obesity comorbidities. Methods: Members of the Children's Hospital Association (formerly NACHRI) FOCUS on a Fitter Future II (FFFII), a collaboration of 25 US pediatric obesity centers, used a combination of the best available evidence and collective clinical experience to develop consensus statements for pediatric obesity-related comorbidities. FFFII also surveyed the participating pediatric obesity centers regarding their current practices. Results: The work group developed consensus statements for use in the evaluation and treatment of lipids, liver enzymes, and blood pressure abnormalities and PCOS in the child with overweight and obesity. The results of the FFFII survey illustrated the variability in the approach for initial evaluation and treatment as well as pattern of referrals to subspecialists among programs. Conclusions: The consensus statements presented in this article can be a useful tool for PCPs in the management and overall care of children with overweight and obesity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140335/1/chi.2013.0120.pd

    Effect of Relative Weight Group Change on Nuclear Magnetic Resonance Spectroscopy Derived Lipoprotein Particle Size and Concentrations among Adolescents

    Get PDF
    To examine whether longitudinal changes in relative weight category (as indicated by change in BMI classification group) were associated with changes in nuclear magnetic resonance (NMR) derived lipoprotein particles among US youth

    Relationship of serum bilirubin concentration to kidney function and 24-hour urine protein in Korean adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationships among serum bilirubin concentration, kidney function and proteinuria have yet to be fully elucidated, nor have these relationships been investigated in Korean adults.</p> <p>Method</p> <p>We retrospectively reviewed the medical records of Korean adults who were evaluated at Kosin University Gospel Hospital (Busan, Republic of Korea) during a five-year period from January 2005 to December 2009. We evaluated the relationships among serum bilirubin concentration, estimated glomerular filtration rate (eGFR) and 24-hour urinary protein excretion in a sample of 1363 Korean adults aged 18 years or older.</p> <p>Results</p> <p>The values of eGFR <60 mL/min/1.73 m<sup>2 </sup>and 24-hour urine albumin β‰₯150 mg/day were observed in 26.1% (n = 356) and 40.5% (n = 553) of subjects, respectively. Fasting glucose levels β‰₯126 mg/dL were observed in 44.9% (n = 612) of the total sample. After adjustment for potential confounding factors including demographic characteristics, comorbidities and other laboratory measures, total serum bilirubin was positively associated with eGFR and negatively associated with proteinuria both in the whole cohort and in a subgroup of diabetic individuals.</p> <p>Conclusions</p> <p>To our knowledge, this is the first hospital-based study specifically aimed at examining the relationships among serum total bilirubin concentration, 24-hour urine protein and kidney function in Korean adults. We demonstrated that serum total bilirubin concentration was negatively correlated with 24-hour urine protein and positively correlated with eGFR in Korean non-diabetic and diabetic adults.</p

    Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer

    Get PDF
    The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification

    STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Get PDF
    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia.Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer.These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood

    Regulation of Inflammatory Gene Expression in PBMCs by Immunostimulatory Botanicals

    Get PDF
    Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses

    Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases.

    Get PDF
    Resveratrol-a natural polyphenolic compound-was first discovered in the 1940s. Although initially used for cancer therapy, it has shown beneficial effects against most cardiovascular and cerebrovascular diseases. A large part of these effects are related to its antioxidant properties. Here we review: a) the sources, the metabolism, and the bioavailability of resveratrol; b) the ability of resveratrol to modulate redox signalling and to interact with multiple molecular targets of diverse intracellular pathways; c) its protective effects against oxidative damage in cardio-cerebro-vascular districts and metabolic disorders such as diabetes; and d) the evidence for its efficacy and toxicity in humans. The overall aim of this review is to discuss the frontiers in the field of resveratrol's mechanisms, bioactivity, biology, and health-related use
    • …
    corecore