250 research outputs found

    Defining Marine Irreplaceable Habitats: Literature review. NECR474.

    Get PDF
    Understanding which habitats should be considered irreplaceable in the marine environment is important for Natural England’s marine casework and in new areas of work such as marine net gain. Knowing which habitats are irreplaceable will assist developers, planners and regulators to avoid habitats that cannot be replaced or recreated elsewhere in compensation for their loss. The Marine Biological Association of the UK (MBA) was commissioned by Natural England to define marine habitat irreplaceability and define coastal and marine irreplaceable habitats. The commissioned project consisted of three stages: Stage 1: A literature review on definitions of marine habitat irreplaceability. Stage 2: Interviews with experts to further discuss and refine criteria for marine habitat irreplaceability. Stage 3: Application of methodology to assess irreplaceability to UK Level 3 and 4 EUNIS habitats

    Word knowledge and lexical access in monolingual and bilingual migrant children: Impact of word properties

    Get PDF
    Word knowledge and the speed of word processing in monolingual children and adults are influenced by word properties, such as the age of acquisition (AoA), imageability, and frequency. Understanding how different properties of words contribute to the ease of processing by bilingual children is a critical step for establishing models of childhood bilingualism. However, a joint impact of these properties has not been so far assessed in bilingual children. Here, we compared the impact of AoA, imageability, and frequency on accuracy and response times in picture naming and picture recognition tasks in monolingual and bilingual children. We used Cross-Linguistic Lexical Tasks to test 45 monolingual children (aged 4 to 7 years) and 45 migrant bilingual children in their L1 (Polish). Word AoA, imageability, and frequency independently affected the accuracy and response times in both picture naming and picture recognition tasks. Crucially, bilingual children were more sensitive to word characteristics than their monolingual peers: Bilingual children’s accuracy was particularly low for words of high AoA (in the picture recognition task) and for words of low frequency (in the picture naming task). Also, the increase in response times for low-imageable and low-frequent words was particularly salient in bilingual children. The results suggest a new area of interest for further studies: the question of whether bilinguals and monolinguals show different sensitivity to psycholinguistic factors, and if so, does that sensitivity change with age or language exposure

    A review of climate change and the implementation of marine biodiversity legislation in the United Kingdom

    Get PDF
    1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions

    Distinguishing globally-driven changes from regional- and local-scale impacts: the case for long-term and broad-scale studies of recovery from pollution

    Get PDF
    Marine ecosystems are subject to anthropogenic change at global, regional and local scales. Global drivers interact with regional- and local-scale impacts of both a chronic and acute nature. Natural fluctuations and those driven by climate change need to be understood to diagnose local- and regional-scale impacts, and to inform assessments of recovery. Three case studies are used to illustrate the need for long-term studies: (i) separation of the influence of fishing pressure from climate change on bottom fish in the English Channel; (ii) recovery of rocky shore assemblages from the Torrey Canyon oil spill in the southwest of England; (iii) interaction of climate change and chronic Tributyltin pollution affecting recovery of rocky shore populations following the Torrey Canyon oil spill. We emphasize that “baselines” or “reference states” are better viewed as envelopes that are dependent on the time window of observation. Recommendations are made for adaptive management in a rapidly changing world

    Aspects of Benthic Decapod Diversity and Distribution from Rocky Nearshore Habitat at Geographically Widely Dispersed Sites

    Get PDF
    Relationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5). Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to 1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more in-depth work in the still poorly understood field of biodiversity distribution

    Patterns of abundance across geographical ranges as a predictor for responses to climate change: Evidence from UK rocky shores

    Get PDF
    Aim: Understanding patterns in the abundance of species across thermal ranges can give useful insights into the potential impacts of climate change. The abundant-centre hypothesis suggests that species will reach peak abundance at the centre of their thermal range where conditions are optimal, but evidence in support of this hypothesis is mixed and limited in geographical and taxonomic scope. We tested the applicability of the abundant-centre hypothesis across a range of intertidal organisms using a large, citizen science-generated data set. Location: UK. Methods: Species' abundance records were matched with their location within their thermal range. Patterns in abundance distribution for individual species, and across aggregated species abundances, were analysed using Kruskal–Wallis tests and quantile general additive models. Results: Individually, invertebrate species showed increasing abundances in the cooler half of the thermal range and decreasing abundances in the warmer half of the thermal range. The overall shape for aggregated invertebrate species abundances reflected a broad peak, with a cool-skewed maximum abundance. Algal species showed little evidence for an abundant-centre distribution individually, but overall the aggregated species abundances suggested a hump-backed abundance distribution

    Sequence locally, think globally:The Darwin tree of life project

    Get PDF
    The goals of the Earth Biogenome Project—to sequence the genomes of all eukaryotic life on earth—are as daunting as they are ambitious. The Darwin Tree of Life Project was founded to demonstrate the credibility of these goals and to deliver at-scale genome sequences of unprecedented quality for a biogeographic region: the archipelago of islands that constitute Britain and Ireland. The Darwin Tree of Life Project is a collaboration between biodiversity organizations (museums, botanical gardens, and biodiversity institutes) and genomics institutes. Together, we have built a workflow that collects specimens from the field, robustly identifies them, performs sequencing, generates high-quality, curated assemblies, and releases these openly for the global community to use to build future science and conservation efforts.</jats:p
    corecore